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Abstract  We investigate current vertex normal com-
pul.'l.li-::-rl '.1]5’-::-ri|.|‘|mr: and evaluate ther efectivenoss ab
.'Lp[:-r\-c:o'.ilrl.'l.liug n.n'.ﬂ}'lil:'.1'||.'.-*--:'-::-m[:-uL'.1|::-|l:: [and thus com-
parable] normals for o vanety of classes of model. We
bind that the most accurate .'|.|[.:_-::-ril|'||r| dn[:-nrl-:]r: car the
class and that for some classes, none of the available

algorithms 1= particalarly good. We alse compare the

relative speeds of all algorithms.

1 Imtroduction

Vertex normals, which are normal vecbors bound to the
vertices ol polygonal facets, are cormmonly used bo render
polygonal meshes as anoothly-shaded three-dimensional
b pects.

When the mesh has an underlying analytical imphet,
explicit, o1 parametric repressntabion, we can compute
mesh vertex normals dicectly from that representation,

but when such repressntations are not avallable, as i the

case of depth scan or gecgraphical data, an algorithmic

approach based salely cn the given mesh is necessary.
Am wer shall see, a number of researchers have pro-

posed such algorithms, What we present here s o systema-

tic survey of all of them on a varnety of mesh sources,

The sources we choose are all analytical in nature, s
that we are able bo compare the algorithmic wath the
analybical “exact”™ normals, Py choosing aowide vanety
of data medels, we believe that our results will exkrapoe
late b non-analybical meshes, Alsc, by computing verbes
narmals for the same models with diflering algorithms,

we can evaluate their relabive speed.

2 Vertex Mormal Algoeithms

Since the early 1970°s, graphics researchers have pro-
duces] several algorithms ks compube verbex normals,
Thes= algcaithms differ substantially fron each cbher,
but they all have in commen the notion of weighting

adjacent face normals o some fashion, In this secton,



Acremym Algerithm

MEWCSA | Mean Edge Weighted by
Cotangent= of Subtended Angles
LARLIY Wesan Weighitesl by Angls
WUWAAT Wean Weightesl by Areas
of Adjacent Iriangles
LR N MWesan Weighted Eoqually

MW ELR Mean Weighted by Edge
Lengih Recipracal=

MOWRELR | Mean Weighted by Soquare Roaod
of Edge Lengih Reciprocals

MWEELR | Mean Weightee by Sine

ancd Edge Lemgth Reciprocals

Table 1 Acronymz of Vertes Normal Algorithms Investi-

galexl

wer will review each of them 1o chronological crder. For
ease of reference, Table | hists in alphabetical order the
acronyms we define here in chronclogical order together

with their definiticns.

21 The “Mean Weighted Equally”™ { MWE) Algorithm

The hirst verbex normal .'|.|[_:_-::-riL|'||r|: which we will refler to
as the*Mean Weighted Equally™ (MWTE] algeaithm, was
intraduced by Henn Gouraod|4] im0 1971:
NywE | 2 N: (13
1=1
where the summation i= over all n faces inodent o the
verbes in question and M s the face normal (Ehe normal

tx the plane containing the face) of the ith Face. (We waill
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use “is parallel 27 1970 to make implicit the necessary
yet trivial normalization step) In this algonthm, the
normal of each adjacent Facet contributes equally to the
vertex normal.

An extension of MWE which works with nen-manifold
surfares but requires more time ko do so1s a three-pass
algorithm inkroduced by Overveld and Wayall| 8] in 1997,
Am the surfaees we will deal with here are all manifelds ar

manifalds with edges, we will only note this in passing.

2.2 The “Mean Weighled by Angle™ (M WA Algontfem

Ancther algorithm lor vertex normals, which we refer bo
as the “Mean Weighted by Angle™ (MWA) algarithm,
was proposed by Thicmer and Wiithrich|10] in 1998,
Unlike MWTE, MWA also incorporates the geometric
cantribution of each facet, that is considering the angle

und.-e'-r \‘-'I'Iil:l'l = f.'l.-:'-e'-l i!’i il'll!'id.!!"'lll b |..|'II!"' verbex, T‘I‘Ii.'! .‘II‘I'-‘.IFL

formula is:

ra

N."."I'L‘l-."‘n. ] Z I (2]
i—1

where a; is the angle betwesn the two edge vectors E;
and Eip of the ¢ih facet sharng the vertes, [We will
herealier assume that edge subscripts “wrap around™ s
that B ; — E| and E; —E_.}

For this algorithn and obher algorithms presenied
hesre, com ey ean be quickly computed from the dot prod-

uet of the edge vectors by the formula:

EI i El-'l
|Ei| [Eizal

OO O

(3]
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2.5 The “Mean Weaghted by Sine and Edge Lengih

Reciprooals™ (MWSELR) Algardhm

MWA suggestied assigning nom-equal weights deriving
from the geometry, In 1990, another non-equal wedghied

vertes normal algorithm, which we refer toas the “Yean

2.5 The “Mean Weighted by Edge Lengil Reciproeals™

FMWELR] Algorsthem

We refer to another wertex normal algonthm appear-
g in Max|3) as the “Mean Weaghted by Fdge Length

Reciproomls” [MWELR] algorithm, This modifes the

Weighted by Sine and Edge Length Reciproeals" (MWSELE)MWSELR weights by omitting the sina; Fackors:

was mnbroduced by Max|5). His farmuolabion aceounts for
the differences i size of the cets surcounding the ver-
tex by ammgning lorger weights for smaller Gacets, which
he found helped o handle the cases when the Facets sur-
rounding a vertex differ greatly i lengih. The MWSELR
Farmula s

mn .
M minex;

1=1 ! L

where N, E; and E; | are as in (29,

2.4 The “Mean Weaghted by Areas of Adjocens

Triangles” {MWAAT) Algordfm

Mazx[5] also presented several ather verbes normal algo-
rithms besicdes MWSELR, with the intent of comparisan.
We refer to the Brst of these as as “Mean Weighted by
Areas of Adjacent Triangles™ [MWAAT), This algorithm
incorporabes the ares of the trangle formed by the fwo
edges of each Facet [whether the faost s trangular or

nok ) incident on bhe verfes:

NytwaaT | 3 N BBy | sna; (%)
=1

‘iN.|E.-xE.-.1|
i=1

where M;. E;, E; . and a; are as in [2).

M

NywELR | 2 EE | th)
i=1 b b

where M, E;, and E;, | are a= in (2],

2.8 The “Mean Wenphded by Square Reol of Fdge

Length Reciprecels" (MWRELR) Algonthm

The last vertex normal algorithm in Max[8] is what we
refer to as the "Mean Weighted by Square Root of Edge
Length Recipracals™ (MWRELR) algorithm. It is similar
to the MWELR, with the addition of a square root:

rn N ;

MywirELR | } —/———
Z o [ | By |

where W, E;:. and E;. | are as n [2).

2.7 Some Comments on Waz's Algorthms

[t is worth noting that Max|3| propesed the MWSELR,
MWAAT, MWELR, and WMRELR algorithrms with the

airn of emparically comparing their eflectiveness, To do

g, he first comstrocted LLOCO,000 surfaces of the form
z= Ax® + Brp+ Op* + D2 + Ex?y+ Fry® + 607 (8)

with A, 8, O 0 E, F, and & all uniformly distribubed

peeudorandom numkbers in the interval =001, 001, These=



he took to be representative of the third crder behayvior
al =mcath surfaces, He transkated the surface so that the
candidate vertex ) lay ab the ongin and then rotated
them =o that the analytical normal pointed in the = di-
rection. He then generated o set of vertices W, Wy, ...,
W, 1 with uniformly distributed psendorandom walues
in polar ccordinates + and @ and converted them o a
Cartesian [r,%, =) with = given by (8], The arccosine of
the resulting z component of the algorithrmic normal was
the angular discrepancy.

For each sequence {W;}. he computed the normal
according to each algorithm and measured the angu-
lar discrepancy betwesn the fwo, In thess circumsbances,
comparing RS values of the angular discrepancy over
his test ensemble, he found that the MWSELR algo-
rithm was the most accurate, with RMS discrepancies
betwee=n 1.5 and 3.0°, depending cn the valence of ).
The ather algorithms produced RMS discrepancies be-

tween 2857 and 105",

28 The “Mean Edge Wenghled by Cofangents af

Subtended Angles” [MEWEOSA) Algorthm

Deshrun, et '.1].||| Fﬂ"'!'il."l'll.i.'!d a vertex normal '.1]5’-::-ril|‘|m
v tefer to as the “Mean Edge Weighted by Cobangents
af Subtended Angles™ (MEWOCSA] algonithm which s
unicque in that, as the name siggests, it s based not on
a weaghied sum of face normals, but on a weighted sum

af adge vectors incident to the vertex, In cur notabion,
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their formula is:

_,!EI"' p oot o ok 3 E;
E:‘ 1 |E| X El'-1|

—ENMEW 5 A ]

where & 15 the mean curmture, Eq and Eip 1 are as i (2,
ai and & are the angles subtended by E; as measured
from the I-neighbor vertices co B, and E;, .

Mote that this incorporates both the mean curvature
and the vertex normal into o single quantity, The authors
point cut that a normal of unit length can be obbained
by normalizing the nght hand side. We will revisit this

cheservabion al a later point.

3 Comparing Vertex Mormals

When analytical verbex normals are available, algorich-
mic verbex normals are not needed. Nevertheless, if we
chocse a selecbion of models with known analytical nor-
mals, we can use them to test the accumcy of oor algo-
rithmns.

This s similar to Max|i|'s approach, except that we
will choces models that more closely resemble specihc
appheation domains than the synthetic one he used (de

scrihed in Section 2.7).

31 Choiwe of Madels

To compare sach vertex normal algerithm, we selected
several classes of model with analytically-computable

vertex normals from thres categones: tngonometncally-

parameterized surfaces, height elds, and marching tetrahad -
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tesmelated 1sceurfaces. All of them have varying armounis
af gesmetrie and topologieal regularity.

For each madel in each class, we chose loaw, medium,
and high resclubion (Eriangle count) instances,

We represent the meshes of all of these -::-hji::n:'l:i- u:iing
the ASCI versicn of the OTF | "Dhjl::l:L Tile Farmat” .I|!'-.||
format, which 1= masy to both write and parse, and which
permits the use of the Qeomesew |9 geometry viewer bo

vieaww results and captare images.

811 Trigonemefrmcally- Peremeferized Surfoces Trigo-
nometrically-pammeterioed  (herealter, “TPY) surfaces
are defined by a parametnc mappng that nvolves
trigonometric functions. YWe chose spherss and bor as

representatives of this class of model. Their representa-

ticns are brivial.

8 1.2 Heighf Ficlds Height Belds (hereafter, “HF"] are

based on analytical Functions of the form = = flax, g,
Terrain moedels in computer graphios genemally take the
form of HF =, An HT is ofien sampled ona twoedimensicaal
array of altitude values ab regular intervals (or “post
spacings . as relerred o by geographers| 2|1, They are of-

ten defined on a regular grid and a rectangular domain,

Fepresentatives of this class are:

Perlin Nevse Hewght Fields A standard way to produce
“random -appearing HFs 15 to use a Perlin noise func-

ticn| 2|, The standard “vector” noise funcbion generates

randam normal vecbors ab grnid points (where =z 15 taken

tex be 0 which may be bicubically interpolated to com-
pute z away [rom the grid points, Scaling and dilating
Perlin noase luncticns allow the user to produce & wide

variety of surfaces which are snosth yet “random”,

Heght fields are aften termed “non-parametnic”, al-
though perhaps a better tenm would be “trivially pam-
metric”, as bhey are a really a subset of parametnc sar-
faces (0, ) — (. 5. 2) with £ = v and g = v, We believe
that results for this class of object may be taken to be
represenbabive of those for similar parametne sarfaces

such as Bezier, Hermibe, B-Spline, et

Fractal News Heghbt Fields  Tercain often displays a
cerbamn degres of self sumilarity over a range of scales,
Perlin noise funcbions are not sslFsimilar, kot moliple

d._‘-'ﬂ.l:“i' dil'-ll.il::ll'lﬁ- -::-r lhl"lrl Cin I:JIE"' |:|:|rn|::-in|:'d. (E=] [:-r\-::-du:l::

what Musgrave in [2] refers 1o as “hybrid moltifractals™.

An im[:-c:-rl.'l.nl pararmeter -:'|'|'.1r:|.|:lr'ri:£i||g =uch HFs i
the: “Fractal inerement™, ur:u.'l.”:.' dencted |::-}I . which
determines the relative contribution of each dilated level
e the Anal resole. IF H s zeco, all levels contribute
l.'!I.'|IJ-'I.”_"¢' and the rl::1-u|ling functicn up[:-rv::qxirnull::r rin-
dam noise, As 0 illl:rl.'!.'l_‘l-'.'!!i: the contribution of each =uc-
cessivly higher dilation (1.2 higher frequencies] is sup-
pressed by a factar of e~ Typically, H = 1 produces a
fairly smooth function. Controlling i allows us bo con-

trol the “roughness” of our synthetic tercain, For this

reasan, we constructed frackal noise HF maodels of de



cremsing selFamilanty with o o9 H 0.5, and

i =nl.

S L8 Mareting Tedrabedre Imphioit function surfaces be-
ing defned as of the form Flr, gy, 20 = 0, 06 1= bnvial to
note that HFs are a subset of implicit functions having

the form fir,p.2) = z — glx, g) foo some g Meverthe-

le==, general implicit functicns are harder to tessalate

than HF=.

:".-1:|.n:'|'|ir|g cubes 15 a [:-n[:-u|:|.r .'|.|[_:_-::-riL|'||r| for tesselat-
iug iscesurfaces from irnr.||i-:'il functions 1t also works
with discrete three-dimensicnal d.n.ln.||ﬂ:?']. Heweervesr, in
the Lorensen form it does nat guariankess the surface to
be topologically consistent betwesn cells, [This 15 ac
tually an aliasing effect| 3]0 Marching tetrahedra [here-
after, “MT7] 15 a wvanation of marching cubes, which
both evercomes this topologioal problem|11] and 15 eas-
ier ko implement.

“I-I." I'I'-l"«'l." I:I‘Il!:ltl-'.'!l'l !'H"'\'I."I'-I] mr:-rl::-a-nrll.'.ﬂ.i'.-'-e'- ilrlp]itil I'un-:*-

Per-

ticns to study: spheres, o “sum-of-cosines™ function,
lin 313 noise functicns, and Perlin 3D torbulence fune-

Lil::lll!'i.

Spheres Tesselaled by Morching Tefrabedra Although
spheres are rarely rendered with MT, doing so in this
case and contrasting the results with the sphere TP of
Secticn 3. 1.1 permits a comparision of verbex normal
computation for two differing tesselations of the same

inpheit ohject. The sosurface value s, of course, the

Zhwangshuang Jin et al.

raclius (or, for a shght increase in speesd, the squared

raclius) of the sphere.

Cosine Sum Tesselated by Marctang Tetrabedra A more

conventional implicit function to tesselate by MT 1= the

sum of cosines given by

coml B d 1] + cos(2r dy)] + oos(2r d2) (10)

Flx, w20

where d 15 a user-adjustable dilation. The resalt i this
cass resembles o mechanical part as might be produced

by a mechanical CATY system,

S0 Perlin Nowse Funchion Tesselafed by Merching Tefra-
bedra The Perhin noise function may ke defned in a
space ol arbitrary dimensionality, so it s gquite straight-
forward bo extend it to an imphot function m theee di-

mensicns and ecbrack an isceurfce using marching cubes,

Perlin-slfgle Turbulence Tesselated by Warching Tetrabe-
drm As noded in Section 3012, the Peclin noise lunction
is not fractal, but as nobed |::-:.I |:'i::'.1|:+|i::3.' ir |E| a ut:ighl-e*d
sumn ol absclute values of =such functions cver a dyadic
range of dilations can exhibib frackal bebiavior, The sien-
r.||i::r;L muode] [or this = called “turbulence” ['.1|l|'|-::-ug|'| nesk
really based on any kind of sclution to the How phe
nomenon of that name), and 1t has been successfully
use] to represent clouds, marble, smoke, and explosions.
We include it hers to represent sceurfaces of these as

well a= MR and similar medical scan data.
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Nadel low resolution

sphere 1P
20 triangles

torus T'F
A0 triangles

Perlin HI
50 triangles

mescdiurn resclubion
14400 Eriangles
1600 Eriangle=

&

1922 triangle=

high resalution

BEIED friangles

1200 friangles

TSR triangles

aphere &7
GED triangles

2135 triangle=

1178 trismgles

Parlin AT
1501 triangles

\

ATHE briangle=

T1E% triongles

cosine =um M
A1 triangles

®

S082 briangles

E2AT triangles

Table 2 Test Ermemble | non-fractal 1|1-::|1||:-nr5].

=1
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muodel H low pesnlutiom | medium resolution _| high resolution
ol 150 triangles | 1922 friangles | VHIE briangles
fractal HIY
0.5 450 triangles | 1922 friangles | TH3E briangles
(TR 450 briangles 1922 trinngles

THEE briangles

turbulenes WT

1501 Eriamgles

ATHR trinngles

TLEA triangles

Table 3 Test Ersemble [fractal members). H is the fractal increment|2].

S 1.4 The Test Ensemble We have implemented all the

algorithms Listed in Section 2 O, Tables 2 and 3 show

our ensemble of test models.

52 Comparson Techrigue

Accuracy and speed are bwo dmportant properties lor

vertes normal algoribhms,

S 21 Avcumey

and analytical normals, we measure the angular discrep-

In cur besting, given the algonthmic

ANCY am

= cow! {Nanalybci:ﬂ ) NﬂI._E'In:-ri’s:h.mi.l:jI

which we express in degrees,

(1)

M:u:lﬁ] chose to compare RMS values angular dis-

erepancy Far the various algorithms, but we believ that
these do not provide the hest indicstion possible of how
the results differ. Instead. to svaluste the neeuracy of
earh vertex normal algorithm, we have generated cumu-

labive histograms, displaying the angular discrepancy [in
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degrees) betwesn the computed vertex normal and the

actual one.

For each madel, we start with a s=t of analytical
[ “true") normals. Then, for each algenthm, we gener-
ate a set of algorithimie normals, We exelude vertices
which aceur on the boundaries of non-closed test ensen-
ble members [height felds and marching tetrahedra in
this case=) from the comparison, as we do nob expect bo
b able bo compate accurate algonthmic normals at such

verbices under any circumstances,

We compute the angular discrepancy for each non-
boundary vertex in the model and sort them by inereas-
ing value, When combaned wath a fraction of those ver-
tices having that discrepancy or less (@ linear scaling of
the sorbed array index], we have o cumulative histogram

of the resulis.

The resulting graph is msy bo interpret visually, showe-
ing as it does for a given discrepancy the feaction of ver-
tex normals that are off by that value or les=. The walue
af the discrepancy at which the fraction 1= 0.5 15 the
median. The fraction for the lagest discrepancy wall be
the 1.0, A companson of the analytical data with il

would be o constant 1.0,

Unlike BMS values, the cumulative histogram shows
cuthiers, and it 15 possible to distinguish technigues that
produce vertex nocmals that differ waldly inoaccunacy
from those that are consistent and, presumably, more

rahust.

S22 Speed Speed s ancther enitenion by which we may
evaluate sach vertex normal algorithm, 16 was straight-
forward to mstrument our code to compuate the time re=
quired per vertex sol=ly to compute normals For eadh
algorithm. Chwing to the relabively short time  needed
and the | psec resclubion of our system CPLU clock, 1k
was necessary o perform multiple iberations b get high-

resclubion per-call brme walues,

4 Pesult=

After testing wath all our models, we obtaned the data
for the: companson of accuracy and speed between algo-

rithms lor vertex normal computation.

4.0 Avewracy

The mesl accurate .'|.|[.:_-::-riL|'|rn d.-e'-pr'ndi::d on the nature
of the model, which we will discuss class-by-class here,

Table 4 summarizes thess resolis.

.00 WEWOSA Remills  Inalmost all cases, MITEWOEA
resulls are bi[_:_uirin:'.'l.nlh,' worse than all ather models.

In =ome of them, a :1igni|'i-:'nnL fr'.:.-:'Li-::-n: =H 1;1rgr- s
S0% ol the MEWOSA results, are 1207 ofl. We belieyve
thes reason far this it st haclk to |:!:I:|_ This= i::|:|u:|.li-::-|| clesfires
the product of the mean curture and the nocmal, 1F
the mean curvature s positive, the normalizaticn of s
right-hand side will praduce the normal. I, however, the

mean curvature 15 negative, the normahzed nght-hand

side must ke negated to get the proper normal.
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Fig., 1 Cumulative Histograms of Angular Discrepancies for Models ‘lesselated by Irigomometrie Parameterization. All of

theses are at law resclution.

An additional problem, addressed by Meyer |6], hap-
pens when the curvature 1= equal to zero (or, Inoa nu-
merical sense, close bo zero). In such cases, the curvature
nocmal cannct be determined from (9, necessitating a

hybrnd method invalving face normals.

We can certainly augment our implementation to do
the labter, and we could alsc address the former by com-
puting the signed, scalar mesan curvature separately and
use it o set the proper direction for the normal, but ab
this poant there would appear fo be Litble motivation for
this. On the sphere TP model, which has a hxed posi-
tive mean curvature, MEWOSA results were always the

worst,

i 1.2 Trigonemelrie Perometerizabion Models Figure |
shows the cumulative histogram results for TP models,

For space reascns, we show here anly the lovw-resclution

results, Increasing resclution tended to improve the coer-

all accuracy, as we should expect, but not the ranking of
algorithms.

In both histograms, we can see that MWSELR and
MWAAT have the highest aceuracy, althoogh mest of
the: others are quite close. Apart from MEWCSA, the
only excepbion i= MWA | but even than the discrepancies

there are no mare than 17-2°

4. 1.5 Height Field Models  Figure 2 shows the cumula-
tiver histogram resulis for HF models. We show only the
low-resclution data for the same reason given in Sec-
tion 4.1.2.

The histograms indicate that MWAAT and MWA
work best for the Perlin noise HF, but that MWE is
almcest as good.

All the algorithms {except MEWOSA] are comps-
rahle for fractal HFs, as shown in Figures 2h, 2, and

2d. Variation af the fractal increment & makes a nobice-

able difference in absclube arcuracy. In the noisiest cass
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Fig, 2 Cumlative Histograms of Angular Discrepancies for Models Tesdated by Height Fields, All of these are at low

resclution. The discrepancy for MEWCEA is discussed in the fext,

[H = 0.1), cver 5F5 ol the vertices had discrepancies of

HI ar more.

4. 1.4 Marching Tefrahedra Models Unlike TP and HF
models, the high resclution results are shown for the MT
models in Figure 3. as lower resolutions exhibited very
high diserepancies (~ 40° or mare) that were chyvicusly
the results of spatial aliasing.

This aliasing, which takes place betwesn the grnd

sampling rate and the intrinsic spatial frequency spec

trum of the function heing sampled produces adverss e
sults for all MT models, but the most pronoun ced effects
are visible in the histograms for the turbulence moded.
We can see this in Figure 4. Going from low resolation
to high resolution produces a notable shift in the dis

CrepRnCies,

For the sphere tesselated by MT, Figure 3a shows
that the best algorithms are MWRELR, MWA, MWELR,

and MWSELR, althcugh MWA has a wider dispersion
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Fig. 3 Cumulative Histograms of Angular Discrepancies for Modelk Tessdaled by Marching Tetrahedm, All of thess are ab

high resaluticn,

in aceuracy. MWAAT and MWE are clerly worss than
the rest, except for MEWOSA . Note that even though
the underlying sphers has constant positive mean curvas
ture, some combination of MT's linear interpolation and
sampling produces negative MEWOSA mean curvatures

for a smmall fraction of the sphere MT model’s wertices.

For the comine sum tesslated by MT, Figure 3h shows

shght adwvantages for MWA, kllowed by MWE, while

MWSELR and MWELR are the warst, except for MEWCSA,. Figure 3d.

Ihferences are less promounced for the Perlin noise

function tesselated by BT, as shown in Figare A, but

MWA =hill mantains a shight advantage over the rest,

while MWE has a slight disadwvantage.

Finally. there 1= very Little diflference i aceuracy For

the turbulence function tesselated by MT. as shown in
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Fig. 4 Efects of Aliasing on the Accuracy of the Turbulence Model Tesselated by Marching Tetrahedra.

4.2 Speed

As we mentionsd in Section 3, we instrumented our cade
ta compute the speed of sach algorithm.

Figure % shows the mean OPU time per call for each
algorithm, as measured on o Dell 1.08Hz Inkel Pentium
[11 machine with 2Z56M B of memeory. We can see that the
MWE algorithm is significantly faster than the other al-
gorithms, MWA is somewhat slower than the others, and
all the other algorithms are roughly equal. This result is

reascnahble, all the wertex normals are caleulated based

‘rAaprr-=lne=s
. v

Fig. 5 Summary of Speed Results,

o welghted sums of Gace normals, and MWE deoes the

fewest operations bo compute the weights,
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MWE | MWa | MWEELR | MWAAT | MWELR | MWRELR | MEWCEA
sphere TP s W . "
torus 'I'F L W W ]
Perlin HE W W " . :r: :-'
iractal HF 0
sphieme AT " W W W )
cosine KL . . " :r' :-'
Perlin 511 ® W ®
twrtblenee AT "

Table d Summary of Accuracy Resulbs, A 97 indicates an algarithm that performes] well. A Se”

indicites an alparithm

that performed badly, In some cases, there were no choioes that stood out as clearly good.

Olverall, the spesd resulis are all close encugh that
most users can probably chocss the mest accurate algo-
rithm without regard to speed.

We nobe in passing that different implementations of
these algorithms may change the times-pec-call some-
what, but the relative spesd of each algonithm should

nok be aflected.

5 Conclusions and Future Work

We have evaluated the resulis -::-rup[:-'l}'irlg s verkes nor-

mal n|g-::-riL|‘|rn:1 tor ten different modeds at three different

discrepancies in the 307 to 407 range, even at the high-
est remalubion, For now, all that we can recommend is to
ncrease the spatial sampling frequency when possable,
In the future, however, this suggests a need o de
velop a new verbex normal algorithm more suitable for
marching tetrahedra. We are particularly interested in

locking at subdivision surface algonthms bo provide this,
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