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Abstract

We present a new glyph called a “comet” to represent vectors.
Comets improve the accuracy of vector visualization to enhance
understanding while reducing visual clutter. Also, they eliminate
an ambiguity possible with conventional vector glyphs.

By using a hue-lightness-saturation (HLS) color space, devot-
ing saturation to distinguish head from tail, and partially devoting
lightness to represent the depth component of a vector’s direction,
comets allow increased visual accuracy and keep hue and (partially)
lightness free to encode other quantities such as the nature of the
object to which the vector is attached, if any.

Comets are computationally inexpensive and can represent large
data sets. We show how it is possible to use the OpenGLTM lighting
model to place comets in static display lists that can be viewed by a
moving camera without reconstruction.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms ; I.3.8 [Computer Graphics]:
Applications—Displaying Library

Keywords: vector display, scientific visualization

1 Introduction

The primary goal of scientific visualization is to present large quan-
tities of complex data in a way that is easily assimilated by the hu-
man visual system. A basic problem in this area is to visualize
“fields”: physical quantities which are not normally directly visible
such as temperature, pressure, velocity, and other scalar, vector, and
even higher-rank tensors. Such fields are defined over a domain of
a given dimensionality.

The fact that the resulting representation must often be shown on
a two-dimensional display complicates the matter even further: One
must somehow reduce the intrinsic dimensionality of the data. This
representation often involves “glyphs”: graphical representations of
fields.

In this paper, we will consider the common problem of the
representation of three-dimensional vectors embedded in a three-
dimensional volume on a two-dimensional display. Vectors may or
may not be associated with particles, lines, surfaces, or other en-
tities and both vectors and the other entities may have their own
distinct glyphs.
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Figure 1: Vector Projection Ambiguity. Any one of the five vectors
on the right has the same projection on the viewing plane, making
them indistinguishable.

Most vector glyphs are based on the projection onto the display
of a line (segment) originating at the vector location: the point in
space at which the vector is measured, pointing in the direction of
the vector, and scaled by some factor, often under control of the
user. As noted by [Max et al. 1994], however, this projection is
subject to the obvious projection ambiguity illustrated in Figure 1:
The component of the vector along the line of sight cannot be de-
termined.

To improve matters, this line is usually drawn with an arrow on
the end opposite the vector location to emphasize the vector direc-
tion. If this arrow is drawn properly, it is possible to somewhat dis-
tinguish large magnitude vectors pointing towards or away from the
viewer from small magnitude vectors perpendicular to the viewer,
but whether the vector is going away from or towards the viewer is
still indeterminate. Furthermore, it now becomes necessary to draw
three or four lines (or, for efficiency, one OpenGL “line strip”) in-
stead of one. Sometimes, a wireframe pyramid is set in place of the
usual dihedral arrow.

The indeterminacy can be removed by drawing a solid polyhe-
dral cone to represent the arrow head, but rendering efficiency drops
even further in order to draw the polyhedral facets. Furthermore,
as the glyphs get increasingly complicated, projections of adjacent
vector glyphs can overlap and give rise to confusion.

In this paper, we present a new glyph for three-dimensional vec-
tors called “comets” which removes directional and magnitudinal
ambiguities at negligible loss of rendering speed and with minimal
confusion for adjacent vectors. Section 2 reviews previous work in
this area. Section 3 describes comet design. Section 4 covers their
implementation in OpenGL. Section 5 shows various vector fields
rendered with comets and presents performance measurements. Fi-
nally, Section 6 presents our conclusions and proposes future work.

2 Previous Work

A large amount work has been done on the display of vector fields.
Although most of it is connected to flow visualization, many of the
techniques are more generally applicable.

[Max et al. 1994], which we have already discussed, includes a



Figure 2: Vector Glyphs Representing Uncertainty (from [Witten-
brink et al. 1996]). An “X” in the dθ column denotes glyphs that
encode angular uncertainty. An “X” in the dm column denotes
glyphs that encode magnitudinal uncertainty.

comparison of 12 field visualization techniques: hedgehogs, par-
ticle traces, streamlines, stream ribbons, flow volumes, textured
splats, stream surfaces, line integral convolution (LIC), spot noise,
line bundles, constrained stream lines, and “hairs”. Many of
these are available in standard visualization packages such as VTK
[Schroeder et al. 1998]. They also note the confusion caused by
densely scattered icons overlapping and occluding each other. (We
will refer to this as the “crowding problem”.) They propose four
techniques for visualizing vector fields near surfaces using: 1) mo-
tion blur, 2) voxel grid containing integral curves, 3) antialiased
lines, and 4) hairs sprouting from the surface bent by the vector
field. All of them project vectors onto a surface. Only one pro-
posed method is view-dependent.

[Dovey 1995] points out that the conventional arrow vector glyph
aggravates the crowding problem, especially in the case of the ir-
regular grids which are his particular emphasis. His solution is to
replace the arrow with a line segment with differing colors for the
head and the tail: a hue encoding. He also mentions, but does not
show, the use of brightness instead of hue for the same purpose.
Both encodings would still be subject to the projection ambiguity.

[Boring and Pang 1996] propose vector glyphs that, using a hue-
saturation-value color scheme, encode vector magnitude as line
segment hue or value and encode vector direction as lighting condi-
tions and vice versa. This minimizes crowding. It reduces, but does
not eliminate, the projection ambiguity, as the viewer must under-
stand the lighting geometry and must use multiple lighting geome-
tries to understand all components of the direction in the latter case.

[Wittenbrink et al. 1996] creates a new set of vector glyphs
to encode uncertainty in environmental vector fields, as shown in
Figure 2. These glyphs decrease the intuitiveness of the display,
thereby requiring more viewer training. They also complicate the
crowding problem.

3 Design

A vector glyph should be:

• intuitive, requiring a minimum of training for viewers to in-
terpret the vector components.
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Figure 3: Comet Vector Glyphs. The use of saturation to distinguish
vector head from tail and lightness to encode the vector component
in the viewing direction prevents the projection ambiguity.

• fast, requiring a minimum of rendering time.

• unambiguous, avoiding projection ambiguity.

• flexible, being applicable to many different applications.

• economical, using as few graphical attributes as possible to
encode the vector components.

• simple, so as to minimize the crowding problem.

To satisfy the speed and simplicity criteria, we propose to rep-
resent vectors as single line segments whose length encodes vec-
tor magnitude, as is done for hedgehogs [Klassen and Harrington
1991], but with additional enhancements.

To the best of our knowledge, no research has used saturation to
encode any aspect of a vector, nor has lightness been used to encode
vector direction. We propose to do both with glyphs we refer to as
“comets”, as shown in Figure 3. The head and tail have differing
encodings of lightness, saturation, and (at the user’s discretion) hue
which remove the projection ambiguity.

The head of the vector is completely unsaturated, so its hue is
irrelevant. Its lightness encodes the viewer component of the vec-
tor direction, increasing monotonically as the vector points more
and more towards the viewer. One simple formula for the percent
lightness is:

L
(

Û
)

= 50
(

V̂ · Û
)

+50 (1)

where V̂ is the normalized viewing direction and Û is the normal-
ized vector being rendered. Note that this maps any vector U to a
lightness percentage in the range [0,100].

There are two ways to color the tail. The first is with full (100%)
saturation. (When the saturation is full, the lightness is, by defini-
tion, 50%.) We will refer to this as “fully saturated” tail coloring.
The user is then free to specify the tail’s hue. This guarantees that
head and tail will always be distinguishable. This is the method
we recommend, especially when comets are the sole indicators of
position: i.e., there are no particle, surface, or similar glyphs.

The other way to color the tail is more obvious: allow the user
to assign an arbitrary RGB value. We refer to this as “RGB” tail
coloring. This would allow the tail to be drawn with an effective
lightness or saturation of less than 100% and could lead to an ambi-
guity about where the head and tail were. It also makes a choice of
background color more problematic. On the other hand, it allows
comets to work with an existing application that has a preexisting
color encoding for other glyphs.

Whether we use fully saturated or RGB tail coloring, the tail
color is free to encode application-specific properties such as par-
ticle type, mass, charge, pressure, temperature, or (redundantly)
magnitude.

The appearance of the pixels drawn between the head and the tail
is implementation dependent, but is typically a linear interpolation



Figure 5: Vectors drawn with the GLUV Vector Utility Library.
The component in the viewing direction is directed towards (left),
perpendicular to (center), or away from (right) the viewer.

in RGB space. Similarly, for the usually small subset of vectors
which project to a single pixel, the appearance depends on imple-
mentation details of the line rasterizer1.

In addition to tail color, all other line segment attributes such as
width or stippling (“dashing”) are available to encode other proper-
ties. The user may also choose to use antialiasing or not depending
on appearance vs. performance tradeoffs.

Comets satisfy all of the design criteria indicated above.

4 Implementation

We discuss three aspects of comet implementation: a utility li-
brary for vectors, an efficient way to put comets, which are view-
sensitive, in display lists, and a useful optimization we found.

4.1 The GLUV Library

We have implemented the design of Section 3 in the form of a
small OpenGL utility library similar to GLU[Neider et al. 1993]
and GLUT[Kilgard 1996] called “GLUV” which allows the user to
treat vectors (i.e. comets) as OpenGL primitives similar to lines and
points. Figure 4 shows its application program interface. Note that
it allows either fully saturated or RGB tail coloring.

Figure 5 shows some examples. Each vector is drawn with a
red tail and has the same component perpendicular to the viewing
direction. The only differences are in the component in the viewing
direction.

Note that since the head of every comet is some shade of gray,
no shade of gray should be used as a background color. We recom-
mend instead the use of a single, light, medium-saturated hue (i.e.,
a pastel) for a background. We should also remind the reader not
to assume that all printer and monitor gamuts are identical and to
verify all color combinations empirically.

Because they were generated by software with a preexisting
color encoding, the comets in Figures 6 and 7 were generated us-
ing RGB tail colors that reflect that encoding. As we mentioned
in Section 3, the fact that the atoms (spheres) associated with each
vector indicate the tail of the vector, this removes a possible source
of confusion. The intuitiveness is maintained.

4.2 Putting Comets in Display Lists

When animating a highly dynamic simulation, each frame generally
needs to be reconstructed from scratch. Occasionally, however, it is
desirable to look at a single static frame of a simulation from vary-
ing viewpoints. In this case, the data itself does not change; only
the camera position changes. In such cases, applications can make
use of OpenGL “display lists” to re-render data with new viewing
parameters. Since comets are view-dependent, this would appear to

1This is, in fact, a sampling problem.

Figure 6: GLUV example in molecular dynamics showing a solvent
of a molecule that contains 333 atoms (and vectors)

Figure 7: GLUV example in molecular dynamics showing a solute
of a molecule.

prevent their being used as part of display lists, but there is a way
to permit this.

For a single directional light source impinging on a diffuse sur-
face with an emissive component, the OpenGL lighting model given
in [Neider et al. 1993] simplifies to:

L = Le + kd max
(

0, N̂ · Ŝ
)

Ld (2)

where L is the resulting color value, Le is the emissive color (set
with glMaterial*()), kd is the diffuse coefficient (also set with gl-

Material*()), N̂ is the surface normal (set with glNormal*()), Ŝ is
the light direction (set with glLight*()), and Ld is the incident (“dif-
fuse”) light color (also set with glLight*()). All quantities are mul-
tispectral (RGB) except N̂ and Ŝ.

While this equation is normally used to color the vertices of poly-
gons, we have found on all OpenGL implementations we have stud-
ied (see Table 1), that it may also be used to color line vertices.
Once set, either directly (with glColor*()) or by the lighting model,
vertex colors are used to render all OpenGL primitives in the same
way. In particular, if smoothing is enabled for lines, the vertex col-
ors, however they are derived, are interpolated in RGB during scan
conversion of any primitive2.

2It is possible to attach normals to OpenGL points, but we have yet to



void gluvBegin(void);
void gluvEnd(void);

void gluvVector3dv(const double *p, const double *v);
void gluvVector3d(const double x, const double y, const double z,

const double vx, const double vy, const double vz);

void gluvTailHued(const double hue);
void gluvTailColord(const double red, const double green, const double blue);

void gluvVectorWidth(const float newWidth);
void gluvVectorSmooth(const int antiAlias);

void gluvEnableLighting(GLenum light_type);

Figure 4: Header File for the GLUV Library.
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Figure 8: Comets lit by OpenGL Lighting.

If we let Le = 0.5 and kdLd = 0.5, (2) resembles (1), with the
exception of the max function. This suggests that if we dedicate a
light source to represent the viewing direction (a “headlight”), we
could use OpenGL lighting to illuminate comets even when they
were statically placed in a display list.

Figure 8 shows how this works. The left diagram shows the case
for vectors (i.e. normals) directed towards the viewer. The right
diagram shows the case for vectors directed away from the viewer.
Note that the left case obeys (1), while the right case shows the
effect of the max function in (2). We have tried a number of ap-
proaches to overcome this, but to no avail. Nevertheless, we feel
that the fact that comets in display lists work for oncoming direc-
tions still has some value. Applications that want to show diverging
vectors accurately can abandon display lists and redraw the comets
with comet lighting disabled when camera motion is complete, for
instance: when trackball motion is ended.

4.3 Optimization

Our initial implementation of comets displayed some unusual be-
havior in the presence of graphics acceleration hardware. Some
graphics cards gave rise to very poor comet performance relative to
others.

Upon investigation, we found that the bottleneck lay in the fact
that since comet appearance is view-dependent, our code was in-
quiring the modelview matrix every time a vector was drawn. In

think of a use for this!

Platform optimized unoptimized
PC 2,420 560
SGI 1,316 23
SUN 760 206

Table 4: Performance Comparison of N-Body Simulation With and
Without Optimizations (in frames per second). For platforms’ keys
see Table 1.

addition, it was pushing and popping line attributes in order to pre-
serve any user-defined state outside of the library. Interestingly, the
slowdown from each of these activities was significant.

To work around this difficulty, we enhanced the GLUV specifi-
cation to include the functions gluvBegin() and gluvEnd(), which
would act like the OpenGL functions glBegin() and glEnd(): The
user calls gluvBegin() before drawing any vectors and gluvEnd()
after the last vector is drawn, with the understanding that no modi-
fications to the modelview matrix or any line attributes can be made
in between.

Table 4 shows how this optimization improved performance. The
differences in all cases are significant.

5 Results

Vector glyphs are not always displayed by themselves. In particular,
they are often shown with “body glyphs” which encode positions of
the relevant objects being simulated: molecules, charged particles,



Hardware characteristics

Platform CPU Speed RAM GPU OS

PC AMD Duron 1.2 GHZ 512 MB nVidia GeForce3 Linux 2.4

SGI 8 R12000 400 MHz 8 GB InfiniteReality3 Irix 6.5

SUN 2 SPARC Ultra 2 200 MHz 356 MB SunVideo 1.4 SunOS 5.8

Table 1: Platforms tested.

Vector Glyph
Body Glyph None Line Pyramid Cone Comet

None N/A

Point

Sphere

Table 2: Vector and Body Glyphs.

stars, galaxies, etc. We have chosen sets of what we believe are
popular vector and body glyphs, and include comets in the former.
These are shown in Table 2.

In this section, we will study these glyphs systematically. We
classify our results into qualitative and quantitative categories.

5.1 Qualitative

Qualitative evaluation criteria are generally subjective. However,
it should be self-evident that the use of comets increases the sim-
plicity in the visualization by reducing the amount of geometry on
the screen compared with other all other glyphs except lines. When
working with huge data sets, using comets significantly decreases
the visual clutter and thus increases the visibility of important fea-
tures needed for analysis.

The intuitiveness of comets is enhanced both by increased num-
bers of them in a single image and by the presence of body glyphs.
Contrast the explanatory examples of a single vector glyph in Fig-
ure 5 with those of Figures 6 and 7. Although we cannot show it
here, it is also enhanced in animation.

5.2 Quantitative

In order to assess the performance overhead involved in rendering
vectors with comets, we wrote a small n-body gravitational sim-
ulation program which displays its rendering speed in frames per
second and enables its user to change both vector and body glyphs
to be all of the types shown in Table 2.

Table 3 shows the performance results on various platforms.
There is a cell in the table that represents nothing (body and vec-
tor glyphs are both “None”) being displayed on the screen. This
represents the overhead of the n-body calculations themselves.

Not surprisingly, on all platforms line glyphs were rendered
fastest. Comets were next in decreasing mean performance, with
speed reductions compared to lines of between 0% and 62%, ex-
cept for point body glyphs on the SGI, where pyramids were drawn
at a 17% speed reduction while comets had a 45% speed reduction.
On all other platforms, comets outperformed pyramids and cones.

Increasingly-complex body glyphs make performance differ-
ences for varying vector glyphs negligible. Presumably, this same
conclusion would apply to other non-vector-related graphics output.

6 Conclusions and Future Work

Comets are a useful vector glyph to have in the visualization devel-
oper’s toolbox. Our final results met our initial criteria for them.
They reduce the crowding problem, eliminate the projection am-
biguity, and provide high graphics performance. Additionally, we
have shown how to put comets in display lists when such lists are
desirable. Comets are intuitive: They do not require a steep learning
curve for the viewer to extract visual information from them.

The one shortcoming of putting comets in display lists stems
from the nature of the OpenGL lighting model. With the advent
of programmable shading hardware on most platforms, we intend
in future to write a slightly modified OpenGL shader to permit neg-
ative direction cosines and thus address this problem.



n-body performance

Vector Glyph

Body

Glyph
None Line Pyramid Cone Comet Platform

14,500 4,300 806 273 2,420 PC

1,659 1,445 1,194 516 1,316 SGI
None

11,500 1,990 148 20 760 SUN

6,500 3,000 715 265 2,100 PC

1,615 1,416 1,180 515 780 SGI
Point

1,950 1,040 136 20 540 SUN

40 40 38 35 40 PC

128 127 120 104 117 SGI
Sphere

11 10 10 7 10 SUN

Table 3: Performance of an N-Body Simulation on Different Platforms (in frames per second). For platforms’ keys see Table 1.

Availability

Contact any of the authors for source code and examples.
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