
The Visual Computer manuscript No.
(will be inserted by the editor)

A Comparison of Algorithms for Vertex Normal Computation

Shuangshuang Jin, Robert R. Lewis, David West

Washington State University

School of Electrical Engineering and Computer Science

Received: date / Revised version: date

Abstract We investigate current vertex normal com-

putation algorithms and evaluate their effectiveness at

approximating analytically-computable (and thus com-

parable) normals for a variety of classes of model. We

find that the most accurate algorithm depends on the

class and that for some classes, none of the available

algorithms are particularly good. We also compare the

relative speeds of all algorithms.

1 Introduction

Vertex normals, which are normal vectors bound to the

vertices of polygonal facets, are commonly used to render

polygonal meshes as smoothly-shaded three-dimensional

objects.

When the mesh has an underlying analytical implicit,

explicit, or parametric representation, we can compute

mesh vertex normals directly from that representation,

but when such representations are not available, as in the

case of depth scan or geographical data, an algorithmic

approach based solely on the given mesh is necessary.

As we shall see, a number of researchers have pro-

posed such algorithms. What we present here is a systema-

tic survey of all of them on a variety of mesh sources.

The sources we choose are all analytical in nature, so

that we are able to compare the algorithmic with the

analytical “exact” normals. By choosing a wide variety

of data models, we believe that our results will extrapo-

late to non-analytical meshes. Also, by computing vertex

normals for the same models with differing algorithms,

we can evaluate their relative speed.

2 Vertex Normal Algorithms

Since the early 1970’s, graphics researchers have pro-

duced several algorithms to compute vertex normals.

These algorithms differ substantially from each other,

but they all have in common the notion of weighting ad-

2 Shuangshuang Jin et al.

jacent face normals in some fashion. In this section, we

will review each of them in chronological order.

2.1 The “Mean Weighted Equally” (MWE) Algorithm

The first vertex normal algorithm, which we will refer to

as the“Mean Weighted Equally” (MWE) algorithm, was

introduced by Henri Gouraud[1] in 1971:

NMWE ‖
n

∑

i=1

Ni (1)

where the summation is over all n faces incident to the

vertex in question and Ni is the face normal (the normal

to the plane containing the face) of the ith face. (We will

use “is parallel to” (“‖”) to make implicit the necessary

yet trivial normalization step.) In this algorithm, the

normal of each adjacent facet contributes equally to the

vertex normal.

An extension of MWE which works with non-manifold

surfaces but requires more time to do so is a three-pass

algorithm introduced by Overveld and Wyvill[4] in 1997.

As the surfaces we will deal with here are all manifolds or

manifolds with edges, we will only note this in passing.

2.2 The “Mean Weighted by Angle” (MWA) Algorithm

Another algorithm for vertex normals, which we refer to

as the “Mean Weighted by Angle” (MWA) algorithm,

was proposed by Thürmer and Wüthrich[2] in 1998.

Unlike MWE, MWA also incorporates the geometric

contribution of each facet, that is, considering the angle

under which a facet is incident to the vertex. The MWA

formula is:

NMWA ‖

n
∑

i=1

αiNi (2)

where αi is the angle between the two edge vectors Ei

and Ei+1 of the ith facet sharing the vertex.

For this algorithm and other algorithms presented

here, sin αi can be quickly computed from the cross prod-

uct of the edge vectors by the formula:

sin α =
|Ei × Ei+1|

|Ei| |Ei+1|
(3)

with En+1 ≡ E1.

2.3 The “Mean Weighted by Sine and Edge Length

Reciprocal” (MWSELR) Algorithm

MWA suggested assigning non-equal weights deriving

from the geometry. In 1999, another non-equal weighted

vertex normal algorithm, which we refer to as the “Mean

Weighted by Sine and Edge Length Reciprocal” (MWSELR)

was introduced by Max[3]. His formulation accounts for

the differences in size of the facets surrounding the ver-

tex by assigning larger weights for smaller facets, which

he found helped to handle the cases when the facets sur-

rounding a vertex differ greatly in length. The MWSELR

formula is:

NMWSELR ‖

n
∑

i=1

Ni sin αi

|Ei| |Ei+1|
(4)

where Ni, Ei and Ei+1 are as in (2).

A Comparison of Algorithms for Vertex Normal Computation 3

2.4 The “Mean Weighted by Areas of Adjacent

Triangles” (MWAAT) Algorithm

Max[3] also presented several other vertex normal algo-

rithms besides MWSELR, with the intent of comparison.

We refer to the first of these as as “Mean Weighted by

Areas of Adjacent Triangles” (MWAAT). This algorithm

incorporates the area of the triangle formed by the two

edges of each facet (whether the facet is triangular or

not) incident on the vertex:

NMWAAT ‖

n
∑

i=1

Ni |Ei| |Ei+1| sin αi (5)

=

n
∑

i=1

Ni |Ei × Ei+1|

where Ni, Ei, Ei+1, and αi are as in (2).

2.5 The “Mean Weighted by Edge Length Reciprocals”

(MWELR) Algorithm

We refer to another vertex normal algorithm appear-

ing in Max[3] as the “Mean Weighted by Edge Length

Reciprocals” (MWELR) algorithm. This modifies the

MWSELR weights by omitting the sinαi factors:

NMWELR ‖

n
∑

i=1

Ni

|Ei||Ei+1|
(6)

where Ni, Ei, and Ei+1 are as in (2).

2.6 The “Mean Weighted by Square Root of Edge

Length Reciprocals” (MWRELR) Algorithm

The last vertex normal algorithm in Max[3] is what we

refer to as the ”Mean Weighted by Square Root of Edge

Length Reciprocals” (MWRELR) algorithm. It is similar

to the MWELR, with the addition of a square root:

NMWRELR ‖
n

∑

i=1

Ni
√

|Ei||Ei+1|
(7)

where Ni, Ei, and Ei+1 are as in (2).

2.7 Some Comments on Max’s Algorithms

It is worth noting that Max[3] proposed the MWSELR,

MWAAT, MWELR, and WMRELR algorithms with the

aim of empirically comparing their effectiveness. To do

so, he first constructed 1,000,000 surfaces of the form

z = Ax2 +Bxy +Cy2 +Dx3 +Ex2y +Fxy2 +Gy3 (8)

with A, B, C, D, E, F , and G all uniformly distributed

pseudorandom numbers in the interval [−0.1, 0.1]. These

he took to be representative of the third order behavior

of smooth surfaces. He translated the surface so that the

candidate vertex Q lay at the origin and then rotated

them so that the analytical normal pointed in the z di-

rection. He then generated a set of vertices V0, V1, . . . ,

Vn−1 with uniformly distributed pseudorandom values

in polar coordinates r and θ and converted them to a

Cartesian (x, y, z) with z given by (8). The arccosine of

the resulting z component of the algorithmic normal was

the angular discrepancy.

For each sequence {Vi}, he computed the normal ac-

cording to each algorithm and measured the angular dis-

crepancy between the two. Under these circumstances,

comparing RMS values of the angular discrepancy over

4 Shuangshuang Jin et al.

his test ensemble, he found that the MWSELR algo-

rithm was the most accurate, with RMS discrepancies

between 1.5◦ and 3.0◦, depending on the valence of Q.

The other algorithms produced RMS discrepancies be-

tween 2.8◦ and 10.8◦.

3 Comparing Vertex Normals

When analytical vertex normals are available, algorith-

mic vertex normals are not needed. Nevertheless, if we

choose a selection of models with known analytical nor-

mals, we can use them to test the accuracy of our algo-

rithms.

This is similar to Max[3]’s approach, except that we

will choose models that more closely resemble specific

application domains than the synthetic one he used (de-

scribed in Section 2.7).

3.1 Choice of Models

In order to do our comparison between each algorithm

for vertex normal computation, we selected several classes

of model with analytically-computable vertex normals

from three categories: trigonometrically-parameterized

surfaces, height fields, and marching tetrahedra-tesselated

isosurfaces. All of them have varying amounts of geomet-

ric and topological regularity.

For each model in each class, we chose low, medium,

and high resolution (triangle count) instances.

We represent the meshes of all of these objects using

the ASCII version of the OFF (“Object File Format”)[5]

format, which is easy to both write and parse, and which

permits the use of the Geomview [5] geometry viewer to

view results and capture images.

3.1.1 Trigonometrically-Parameterized Surfaces Trigo-

nometrically-parameterized (hereafter, “TP”) surfaces

are defined by a parametric mapping that involves

trigonometric functions. We chose spheres and tori as

representatives of this class of model. Their representa-

tions are trivial.

3.1.2 Height Fields Height fields (hereafter, “HF”) are

based on analytical functions of the form z = f(x, y).

Terrain models in computer graphics generally take the

form of HFs. An HF is often sampled on a two-dimensional

array of altitude values at regular intervals (or “post

spacings”, as referred to by geographers[6]). They are of-

ten defined on a regular grid and a rectangular domain.

Representatives of this class are:

Perlin Noise Height Fields A standard way to produce

“random”-appearing HFs is to use a Perlin noise func-

tion[6]. The standard “vector” noise function generates

random normal vectors at grid points (where z is taken

to be 0) which may be bicubically interpolated to com-

pute z away from the grid points. Scaling and dilating

Perlin noise functions allow the user to produce a wide

variety of surfaces which are smooth yet “random”.

A Comparison of Algorithms for Vertex Normal Computation 5

Height fields are often termed “non-parametric”, al-

though perhaps a better term would be “trivially para-

metric”, as they are a really a subset of polynomially-

defined parametric surfaces. We believe that results for

this class of object may be taken to be representative

of those for similar parametric surfaces such as Bézier,

Hermite, B-Spline, etc.

Fractal Noise Height Fields Terrain often displays a

certain degree of self similarity over a range of scales.

Perlin noise functions are not self-similar, but multiple

dyadic dilations of them can be combined to produce

what Musgrave in [6] refers to as “hybrid multifractals”.

An important parameter characterizing such HFs is

the “fractal increment”, usually denoted by H, which

determines the relative contribution of each dilated level

to the final result. If H is zero, all levels contribute

equally and the resulting function approximates ran-

dom noise. As H increases, the contribution of each suc-

cessivly higher dilation (i.e. higher frequencies) is sup-

pressed by a factor of e−H . Typically, H = 1 produces a

fairly smooth function. Controlling H allows us to con-

trol the “roughness” of our synthetic terrain. For this

reason, we constructed fractal noise HF models of de-

creasing self-similarity with H = 0.9, H = 0.5, and

H = 0.1.

3.1.3 Marching Tetrahedra Implicit function surfaces be-

ing defined as of the form f(x, y, z) = 0, it is trivial to

note that HFs are a subset of implicit functions having

the form f(x, y, z) ≡ z − g(x, y) for some g. Neverthe-

less, general implicit functions are harder to tesselate

than HFs.

Marching cubes is a popular algorithm for tesselat-

ing iso-surfaces from implicit functions. It also works

with discrete three-dimensional data[8][9]. However, in

its original form it does not guarantee the surface to

be topologically consistent between cells. (This is ac-

tually an aliasing effect[7].) Marching tetrahedra (here-

after, “MT”) is a variation of marching cubes, which

both overcomes this topological problem[10] and is eas-

ier to implement.

We have chosen several representative implicit func-

tions to study: spheres, Perlin 3D noise functions, and

Perlin 3D turbulence functions.

Spheres Tesselated by Marching Tetrahedra Although

spheres are rarely rendered with MT, doing so in this

case and contrasting the results with the sphere TP of

Section 3.1.1 permits a comparision of vertex normal

computation for two differing tesselations of the same

implicit object. The isosurface value is, of course, the

radius (or, for a slight increase in speed, the squared

radius) of the sphere.

Cosine Sum Tesselated by Marching Tetrahedra A more

conventional implicit function to tesselate by MT is the

sum of cosines given by

f(x, y, z) = cos(2π dx) + cos(2π d y) + cos(2π d z) (9)

6 Shuangshuang Jin et al.

where d is a user-adjustable dilation. The result in this

case resembles a mechanical part as might be produced

by a mechanical CAD system.

3D Perlin Noise Function Tesselated by Marching Tetra-

hedra The Perlin noise function may be defined in a

space of arbitrary dimensionality, so it is quite straight-

forward to extend it to an implicit function in three di-

mensions and extract an isosurface using marching cubes.

Perlin-style Turbulence Tesselated by Marching Tetrahe-

dra As noted in Section 3.1.2, the Perlin noise function

is not fractal, but as noted by Perlin in [6], a weighted

sum of absolute values of such functions over a dyadic

range of dilations can exhibit fractal behavior. The sim-

plest model for this is called “turbulence” (although not

really based on any kind of solution to the flow phe-

nomenon of that name), and it has been successfully

used to represent clouds, marble, smoke, and explosions.

We include it here to represent isosurfaces of these as

well as MRI and similar medical scan data.

3.1.4 The Test Ensemble We have implemented all the

algorithms listed in Section 2 in C. Tables 1 and 2 show

our ensemble of test models.

3.2 Comparison Technique

Accuracy and speed are two important properties for

vertex normal algorithms.

3.2.1 Accuracy In our testing, given the algorithmic

and analytical normals, we measure the angular discrep-

ancy as

θ = cos−1

(

Nanalytical · Nalgorithmic

)

(10)

which we express in degrees.

Max[3] chose to compare RMS values angular dis-

crepancy for the various algorithms, but we believe that

these do not provide the best indication possible of how

the results differ. Instead, to evaluate the accuracy of

each vertex normal algorithm, we have generated cumu-

lative histograms, displaying the angular discrepancy (in

degrees) between the computed vertex normal and the

actual one.

For each model, we start with a set of analytical

(“true”) normals. Then, for each algorithm, we gener-

ate a set of algorithmic normals. We compute the an-

gular discrepancy for each vertex in the model and sort

them by increasing value. When combined with a frac-

tion of the vertices having that discrepancy or less (a

linear scaling of the sorted array index), we have a cu-

mulative histogram of the results.

The resulting graph is easy to interpret visually, show-

ing as it does for a given discrepancy the fraction of ver-

tex normals that are off by that value or less. The value

of the discrepancy at which the fraction is 0.5 is the

median. The fraction for the largest discrepancy will be

the 1.0. A comparison of the analytical data with itself

would be a constant 1.0.

A Comparison of Algorithms for Vertex Normal Computation 7

Model low resolution medium resolution high resolution

sphere TP
320 triangles 1440 triangles 6080 triangles

torus TP
400 triangles 1600 triangles 4800 triangles

Perlin HF
450 triangles 1922 triangles 7938 triangles

sphere MT
960 triangles 2136 triangles 4176 triangles

Perlin MT
1501 triangles 3758 triangles 7136 triangles

cosine sum MT
2016 triangles 5088 triangles 8267 triangles

Table 1 Test Ensemble (non-fractal members).

8 Shuangshuang Jin et al.

model H low resolution medium resolution high resolution

0.1 450 triangles 1922 triangles 7838 triangles

fractal HF
0.5 450 triangles 1922 triangles 7838 triangles

0.9 450 triangles 1922 triangles 7838 triangles

turbulence MT
– 172 triangles 2088 triangles 10438 triangles

Table 2 Test Ensemble (fractal members). H is the fractal increment[6].

Unlike RMS values, the cumulative histogram shows

outliers, and it is possible to distinguish techniques that

produce vertex normals that differ wildly in accuracy

from those that are consistent and, presumably, more

robust.

3.2.2 Speed Speed is another criterion by which we may

evaluate each vertex normal algorithm. It was straight-

forward to instrument our code to compute the time re-

quired per vertex solely to compute normals for each

algorithm. Owing to the relatively short time needed

and the 1 µsec resolution of our system CPU clock, it

was necessary to perform multiple iterations to get high-

resolution per-call time values.

4 Results

After testing with all our models, we obtained the data

for the comparison of accuracy and speed between each

algorithm for vertex normal computation.

A Comparison of Algorithms for Vertex Normal Computation 9

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

a) Sphere TP b) Torus TP

Fig. 1 Cumulative Histograms of Angular Discrepancies for Models Tesselated by Trigonometric Parameterization. All of

these are at low resolution.

4.1 Accuracy

The most accurate algorithm depended on the nature

of the model, which we will discuss class-by-class here.

Table 3 summarizes these results.

4.1.1 Trigonometric Parameterization Models Figure 1

shows the cumulative histogram results for TP models.

For space reasons, we show here only the low-resolution

results. Increasing resolution tended to improve the over-

all accuracy, as we should expect, but not the ranking of

algorithms.

In the both histograms, we can see that MWSELR

has the highest accuracy, although most of the others

are quite close. The only exception is MWA, but even

then the discrepancies there are no more than 1◦-2◦.

4.1.2 Height Field Models Figure 2 shows the cumula-

tive histogram results for HF models. We show only the

low-resolution data for the same reason given in Sec-

tion 4.1.1.

The histograms indicate that MWAAT works best

for the Perlin noise HF, but that MWA and MWE are

almost as good. MWELR and MWSELR are noticeably

worse.

MWAAT also works best for fractal HFs, as shown in

Figures 2b, 2c, and 2d, followed by MWA. MWELR and

MWSELR are, again, the worst. Variation of the fractal

increment H makes little difference in either absolute or

relative accuracy. Note the necessary change of scale of

the fractal models: Approximately 8% of the vertices in

these models had discrepancies of 10◦ or more.

4.1.3 Marching Tetrahedra Models Unlike TP and HF

models, the high resolution results are shown for the MT

models in Figure 3, as lower resolutions exhibited very

high discrepancies (∼ 40◦ or more) that were obviously

the results of spatial aliasing.

10 Shuangshuang Jin et al.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

a) Perlin Noise HF b) Fractal Noise HF (H = 0.1)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Discrepancy (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

c) Fractal Noise HF (H = 0.5) d) Fractal Noise HF (H = 0.9)

Fig. 2 Cumulative Histograms of Angular Discrepancies for Models Tesselated by Height Fields. All of these are at low

resolution.

This aliasing, which takes place between the grid

sampling rate and the intrinsic spatial frequency spec-

trum of the function being sampled produces adverse re-

sults for all MT models, but the most pronounced effects

are visible in the histograms for the turbulence model.

We can see this in Figure 4. Going from low resolution

to high resolution produces a notable shift in the dis-

crepancies.

For the sphere tesselated by MT, Figure 3a shows

that the best algorithms are MWA, MWELR, and

MWSELR, although MWA has a wider dispersion in ac-

curacy. MWAAT is clearly worse than the rest.

For the cosine sum tesselated by MT, Figure 3b shows

slight advantages for MWA, followed by MWE, while

MWSELR and MWELR are the worst.

A Comparison of Algorithms for Vertex Normal Computation 11

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

a) Sphere MT b) Cosine MT

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

c) Perlin Noise MT d) Turbulence MT

Fig. 3 Cumulative Histograms of Angular Discrepancies for Models Tesselated by Marching Tetrahedra. All of these are at

high resolution.

Differences are less pronounced for the Perlin noise

function tesselated by MT, as shown in Figure 3c, but

MWA still maintains a slight advantage over the rest,

while MWAAT has a slight disadvantage.

Finally, there is very little difference in accuracy for

the turbulence function tesselated by MT, as shown in

Figure 3d, except that MWAAT is slightly worse than

the rest.

4.2 Speed

As we mentioned in Section 3, we instrumented our code

to compute the speed of each algorithm.

Figure 5 shows the mean CPU time per call for each

algorithm, as measured on a Dell 1.0GHz Intel Pentium

III machine with 256MB of memory. We can see that

the MWE algorithm always cost the shortest time to

compute the vertex normals, MWA is the second, and all

12 Shuangshuang Jin et al.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

F
ra

ct
io

n
of

 V
er

tic
es

Angular Difference (in degrees)

MWE
MWA

MWSELR
MWAAT
MWELR

MWRELR

low resolution (8 × 8 × 8 grid) medium resolution (12 × 12 × 12 grid) high resolution (16 × 16 × 16 grid)

Fig. 4 Effects of Aliasing on the Accuracy of the Turbulence Model Tesselated by Marching Tetrahedra.

MWE MWA MWSELR MWAAT MWELR MWRELR

sphere TP ×
√

torus TP ×
√

Perlin HF
√

×
√

×

fractal HF
√

×
√

×

sphere MT
√ √

×
√

cosine MT
√ √

× ×

Perlin MT
√

×

turbulence MT
√

Table 3 Summary of Accuracy Results. A “
√

” indicates an algorithm that performed well. A “×” indicates an algorithm

that performed badly.

1 2 3 4 5 6
0

2

4

6

8

10

12

14

tim
e

pe
r

ca
ll

fo
r

ea
ch

 a
lg

or
ith

m
 (

uS
)

MWE

MWA

MWSELR MWAAT

MWELR

MWRELR

Fig. 5 Summary of Speed Results.

the other algorithms left are roughly equal. This result is

reasonable, all the vertex normals are calculated based

on weighted sums of face normals, and MWE does the

fewest operations to compute the weights.

Overall, the speed results are all close enough that

most users can probably choose the most accurate algo-

rithm without regard to speed.

We note in passing that different implementations of

these algorithms may change the times-per-call some-

what, but the relative speed of each algorithm should

not be affected.

A Comparison of Algorithms for Vertex Normal Computation 13

5 Conclusions and Future Work

We have evaluated the results of applying six vertex nor-

mal algorithms to ten different models at three different

resolutions. Relatively speaking, except for trigonometrically-

parameterized surfaces, MWA is always either the best

or among the best. If speed is of a concern, however,

MWE holds up remarkably well. As resolutions increase,

the differences between these algorithms diminish.

In an absolute sense, however, none of these algo-

rithms does particularly well for marching tetrahedra,

with median discrepancies in the 5◦ to 20◦ range, even

at the highest resolution. Even then, they are still quite

large. For now, all that we can recommend is to increase

the spatial sampling frequency.

In the future, however, this suggests a need to de-

velop a new vertex normal algorithm more suitable for

marching tetrahedra. We are particularly interested in

looking at subdivision surface algorithms to provide this.

References

1. Gouraud, H., Continuous Shading of Curved Surfaces,

IEEE Trans. on Computers, C-20(6), (June, 1971) pps.

623–629.

2. Thurmer, G., Wuthrich, C., Computing Vertex Normals

from Polygonal Facets, Journal of Graphics Tools, 3(1),

(1998) pps. 43–46.

3. Max, N., Weights for Computing Vertex Normals from

Facet Normals, Journal of Graphics Tools, 4(2) (1999),

pps. 1–6.

4. Overveld, C., Wyvill, B., Phong Normal Interpolation Re-

visited, ACM Trans. on Graphics, 16(4) (October 1997)

pps. 379–419.

5. Phillips, M., Geomview Manual

http://www.geomview.org (The Geometry Center,

November 2000).

6. Ebert, D., et al. Texturing and Modeling A Procedural Ap-

proach, 2nd. ed., (Academic Press, 1998).

7. Fournier, A., private communication.

8. Lorenson, W., Cline, H. Marching Cubes: A High Resolu-

tion 3D Surface Construction Algorithm, Computer Graph-

ics, 21(4), (1987) pps. 163-169.

9. Wyvill, G., McPheeters, C., Wyvill, B. Data Struct For

Soft Objects, The Visual Computer, 2(4), (1988) pps. 227-

234.

10. Treece, G.M., Prager, R.W., Gee, A.H., Regularised

Marching Tetrahedra: Improved Iso-Surface Extraction,

Cambridge University (September 1998).

