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Abstract 

We describe an algorithm for computing ray/Bézier patch intersections from a hardware design

aspect.  This algorithm uses patch subdivision and other geometrical techniques to find a given

maximum number of intersection points nearest to the ray origin.  We propose a pipeline-based

hardware architecture, verify the number of pipeline stages required by simulation, and estimate the

performance of a load-balanced implementation based on a state-of-the-art digital signal processor

(DSP).

1  Introduction

Ray tracing is one of the most important rendering techniques in computer graphics for rendering

high quality and photorealistic pictures.   In it, at least one ray is cast into the scene for each pixel of

the image.   If the ray hits an object, it may produce other rays, such as reflection, shadow, and

refraction rays to determine the color of the associated pixel (see [1] for more details).  Ray tracing

deals with thousands, if not millions, of such ray-object intersection calculations in each image and

is thus well known for its exorbitant computation time.
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Xpatch is a software program that uses this graphical technique to model an incident radar signal

and generate the resulting radar cross-sections of various objects.  The object surfaces are modeled

by different shape primitives such as meshes and parametric patches.  Each type of primitive has its

own algorithm to determine intersection with a given ray.  Much work has been conducted at the

Air Force Research Lab (AFRL) to determine which part of Xpatch is the most time consuming,

finding that the majority of the time (between 50% and 80%) is spent in executing these algorithms.

Among commonly-used modelling primitives, Bézier patches stand out for being able to provide

high accuracy of curved surfaces.  Nevertheless, ray/Bézier patch intersection algorithms are

computationally expensive.  Many attempts have been made to improve them.  The Bézier clipping

algorithm [9] introduces an iterative geometric algorithm that finds all solutions of the ray-patch

intersection problem up to an user definable accuracy, but it is hard to determine the number of

iterative steps needed for a given patch.  The Chebyshev boxing algorithm [5] replaces an original

patch by many bilinear approximating patches, which will be subdivided into pieces repeatedly

until the original patch has been well approximated.  The preprocessing procedure required by this

algorithm uses a recursive method to subdivide a given patch.  The bounding volume hierarchy

algorithm [3] combines the previous two by first carrying out the preprocessing procedure in the

Chebyshev boxing algorithm and then calculating the tight bounding volumes.

In [12], one of us demonstrated that the depth of recursive calls using the Bézier clipping algorithm

may vary greatly from patch to patch and from ray to ray.  One patch may need a depth of three

calls while another a depth of eleven, even though both resulted in a single intersection.  All the

above algorithms behave similarly, being based on recursive methods.  Even if we were to

implement the recursion by redundant hardware, they would still not be suitable for hardware

acceleration because of the unpredictable resource allocation required.
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Significant efforts to acclerate intersectio computation have also been made on the hardware side.

As reported by Arvo and Kirk in 1989 [1], these include:

• LINKS-1, a 64-node (Intel 8086/8087) multiprocessor system that can be configured as a set of

parallel pipelines to render a sequence of images.

• Kobayashi's work distributing the world database among a set of intersection processors.

• Goldsmith's work on a general-purpose multiprocessor system for ray-tracing on a hypercube.

More recent efforts include:

• Bouatouch's [2] exploitation of cache and virtual memory techniques to reduce message passing,

yielding a speedup of about 60 on a 64-node MIMD

• Kin and Kyung's [8] ring-structured multiprocessors, allowing a linear speedup by partitioning

objects among processors.

All the aforementioned hardware solutions are based on general-purpose architectures that are

suitable for executing any kind of ray/object intersection problems.

Earlier research conducted by one of us at AFRL in Summer 1998 [6] optimized a ray/triangular

facet intersection algorithm for hardware realization and also proposed the corresponding hardware

architecture.  This article may therefore be considered an extension of that work, focussing on a

similar approach for accelerating ray/Bézier patch intersection.  As before, efforts have been made

to:

1. Develop an algorithm suitable for hardware/software acceleration.

2. Define the algorithm-specific system architecture for physical implementation in the future.

We therefore present a new algorithm based on a set of subtasks including patch subdivision and

related geometric techniques to find a given maximum number of intersection points that are nearest
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to the ray origin.  We also propose a pipelined system architecture based on this algorithm.  The

number of coarse-grained pipeline stages was verified by extensive simulation.  For performance

estimation, the pipeline was refined, load-balanced and mapped into multiple digital signal

processors (DSPs) and custom-designed hardware.  The results show that by reducing the grain

scale of the pipeline and supporting the inherent parallelism of the computing tasks within its stages,

a system throughput of over 106 ray/patch intersections per second is achievable.

Section 2 presents the proposed ray/Bézier patch intersection algorithm and reports our verification

of that algorithm.  Section 3 describes the functional blocks required for executing the algorithm,

and proposes the overall system architecture without explicit specifications on software/hardware

boundaries.  Section 4 describes the performance estimation based on implementation models

relying on off-the-shelf DSPs and limited ASIC for an identified computational bottleneck.  Section

5 concludes the paper.

2  The Ray/Bézier Patch Intersection Algorithm

In this section, we will develop the mathematics of the patch intersection algorithm.

2.1  Background and Overview

Our study has been focused on a bicubic, nonrational, parametric Bézier patch, which we for

simplicity will refer to hereafter as a 'patch'.

A ray, defined by an origin O and a direction D., intersects a patch as shown in Figure 1.  There are

a maximum of 18 possible intersection points when a ray pierces a patch [7], but from a ray tracing

standpoint, we are only interested in finding the intersection closest to  O.  We therefore arbitrarily
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limit our interest here to successively finding and then refining (at most) Ni intersection points that

are nearest to O and then selecting the closest of these as the answer.

One of the major difficulties of the ray/patch intersection problem is that exact solutions to the

problem require finding roots of very high-degree polynomials, which cannot in general be done

analytically and whose numerical solution is error-prone.  Hence, we must look for approximate

solutions.

Figure 2 shows how a mesh of 16 control points define a patch.  The convex hull property states that

the patch must lie inside its convex hull - the smallest (intuitively, "shrink-wrapped") polyhedron

containing all the control points [13].  It is therefore a necessary condition for a ray to intersect a

patch that the ray must intersect the patch's convex hull.  It is not, however, a sufficient condition: a

ray that passed through the convex hull may still miss the patch, but if we subdivide the patch into

smaller patches and then consider the intersection of the ray with these smaller patches,  missing the

patch becomes less likely as the union of the convex hulls of the subpatches approaches the original

patch.  When a ray hits the convex hull of a sufficiently small patch, the center of the patch can be

considered as a good approximation to the ray/patch intersection.

To find a convex hull intersection, then, we first consider the projection-based approach illustrated

in Figures 3 through 6.  Imagine that a ray is contained in the intersection of two perpendicular

planes U and V, and that these, the patch, and its convex hull are all projected onto a third plane

perpendicular to the ray direction.  We use the U and V intersections to define a coordinate system

whose origin is the projection of the ray.

In the projected 2D coordinate system, if the 16 projected control points are located on the same

- 5 -



side of either one of the two axes, the ray must have missed the convex hull of the testing patch

(Figures 4 and 5).  Otherwise the ray may hit the convex hull (Figure 6).

Based on the above discussion, we outline the ray/patch intersection algorithm we will use:

1. Divide an input patch into 4Ni subpatches.  (If Ni is 4, this could be done with two four-way

subdivision levels.)

2. Find all subpatches that are possibly intersected by the ray, based on the convex hull

property.

3. If no subpatches pass the convex hull test, exit with a null intersection result.

4. From all possibly-intersecting subpatches, find the (at most) Ni subpatches that are closest to

the origin of the ray.

5. If the subpatches are sufficiently small, exit with the center of the closest patch to the origin

as the intersection.

6. Subdivide the Ni subpatches to obtain 4Ni smaller subpatches.

7. Repeat steps 2 through 7.

2.2  Notation and Preliminaries

A ray R is represented in the form R � O
�

D t .  For our purposes, we will assume that D is

normalized.  A plane in Euclidean 3-space is defined (as usual) by the equation

A x
�

B y
�

C z
�

E � 0 (1)
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Within a nonzero scaling factor, the normal to such a plane is the vectorA , B ,C .

A nonrational parametric Bézier patch of degree m is defined by

 Q u , v ���
i � 0

n

�
j � 0

m

P i , j B j , m u Bi , n v   for  0 � u , v � 1 (2)

where P ij
� x ij , y ij , z ij are the patch's control points, and the blending functions are the Bernstein

polynomials:

B j , m u � m
j

u j 1 � u m � j m
j � m

!
j ! m � j !

, (3)

In matrix form, (2) becomes

Q u , v � U M P M t V (4)

where U � um um � 1 ... 1 , V � vm vm � 1 ... 1 , P is the control point matrix, M is the

Bézier basis matrix, and Mt is the transpose of M.

The bicubic patch is a special case of (4) with n = m = 3 where

M �

� 1 3 � 3 1
3 � 6 3 0
� 3 3 0 0
1 0 0 0

  and  P �

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

.

2.3  Plane Generation

Given a ray R, we need to find two mutually perpendicular planes U and V that contain the ray.  If

Nu and Nv are the normals of the two planes, respectively, then Nu, Nv, and D are all mutually

perpendicular, as illustrated in Figure 79.
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Of course, an infinite number of vectors are perpendicular to D.  A simple and robust algorithm to

choose two mutually perpendicular ones is:

1. let ξ be x, y, or z such that D ��� min Dx , Dy , Dz  

2. let T be the unit vector in the ξ direction (i.e., T i �
�

i � )

3. Nu � T � D

4. Nv � Nu � D

This could easily be implemented in hardware, especially since the first cross-multiplication is

simply a rearrangement of the elements of D.

2.4  Patch Subdivision

The patch subdivision algorithm described here is based on the de Casteljau algorithm [5].  Control

points of all the subpatches are generated by matrix multiplications which are easily and

parallelizably performed in hardware.  We decompose the algorithm into two steps.

In the first step, we subdivide the range of the parameter u, deriving left ( 0 � u � 1 � 2 ) and right (

1 � 2 � u � 1 ) subpatch control vertices PL and PR  respectively.  The left subpatch QL is

defined by:

QL u , v � Q
u
2

, v . (5)

Using (4), we can rewrite this as
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U M PL M t V � u3

8
u2

4
u
2

1 M P M t V � U
1
8

1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8

M P M t V
(6)

Since this must be true for all U and V, we infer that

PL � M �
1 1
8

1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8

M P � DL P  where DL � 1
8

8 0 0 0
4 4 0 0
2 4 2 0
1 3 3 1 .

(7)

The right subpatch QR is defined by:

QR u , v � Q
u

�
1

2
, v . (8)

Again using (4), we find that

PR � M �
1 1
8

1 0 0 0
3 2 0 0
3 4 4 0
1 2 4 8

M P � DR P  where DR � 1
8

1 3 3 1
0 2 4 2
0 0 4 4
0 0 0 8

.
(9)

In the second step, we apply the same method in the v direction, creating the top and bottom patch

control vertices PB
T and PB

B .  It is easy to show that these are related to a control vertex matrix P'

via PT = P'DT and PB = P'DB, where

DT � 1
8

8 4 2 1
0 4 4 3
0 0 2 3
0 0 0 1

� DL
t

 and DB � 1
8

1 0 0 0
3 2 0 0
3 4 4 0
1 2 4 8

� DR
t

. (10)

Combining the two steps, we derive the control vertex arrays of all four subpatches as
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PTL PTR

PBL PBR
� DL DR P DT

DB
, (11)

which is easily done in parallel.

2.5  Hull Classification

In Section 2.1 we showed how to determine whether a given ray hits the convex hull of a given

patch by looking at the allocation of the projected patch control points in the ray-based projected 2D

coordinate frame.  While conceptually useful, we can be more efficient at implementation by

making four observations.

First, we do not need to do the projections.  We need only determine whether a given control point

lies above or below the U or V plane.  This is a simple evaluation of the plane equation using the

control point.  Recall that in a 3D space, the distance of a point P at (x, y, z) to a plane as given in

(1) is

d �
A x

�
B y

�
C z

�
D

A2 �
B2 �

C2 (12)

This distance is either negative or positive depending on which side of the plane the point P is

located.  The normal defines the positive direction.  The distance is zero if P is on the plane.

Second, we do not need the actual distance, only need its sign to determine whether the point is

above or below the plane.  (We consider the infrequently occurring case where the control point is

contained within the plane to be "above" for hull classification purposes.)

Since we are only interested in the sign of d, which is solely determined by the numerator of the

right-hand side of (12), we can define the sign distance as
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d s
� A x

�
B y

�
C z

�
D (13)

or, in matrix form,

d s
� A B C D P

1
(14)

Our hull classification algorithm says that, for either U or V, if the signs of the sixteen sign

distances are either all positive or all negative, the ray misses the patch.  If this is untrue for both

planes, the ray may hit the convex hull of the patch and hence it may also intersect the patch itself.  

A third observation is that we do not necessarily need to test all 16 points.  Finding two points on

opposite sides of the plane would imply possible intersection, but as this requires sequential

evaluation, we cannot take advantage of this observation.

Fourth, the sign calculations for both planes can also be done simultaneously.

The explicit computations for calculating the 16 sign distances with respect to the planes U and V

are

du
s

� Au Bu Cu Du

p00x p01x ... p32x p33x

p00y p01y ... p32y p33y

p00z p01z ... p32z p33z

1 1 ... 1 1

dv
s

� Av Bv Cv Dv

p00x p01x ... p32x p33x

p00y p01y ... p32y p33y

p00z p01z ... p32z p33z

1 1 ... 1 1

 . (15)

We define the function:
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Sgnsum d s
�

�

i � 0

15 �
1 if d i

s � 0

1 if d i
s � 0

(16)

If either Sgnsum du
s  or Sgnsum dv

s is equal to 16, the ray cannot intersect the patch.

Otherwise, the patch needs to be further divided into smaller subpatches for a more accurate

approximation.

2.6  Patch Center

As stated in Section 2.1, it is necessary to find the center of a given patch for two reasons.  First, an

intersection is approximated by the center of a sufficiently small patch.  Second, in finding the

approximated intersection points, our algorithm must sort out four subpatches (from all possibly-hit

subpatches) closest to the origin of the ray.  We assume here that "closeness" means the distance

between the origin of the ray and the center of a given patch.

One way to define the center of the patch would be to take the arithmetic mean of the control points.

This would be simple to compute, but we have no guarantee that this point actually lies on the

patch, a desirable feature for the final intersection approximation.

Instead, we observe from (4) that for a given patch Q(u, v), an unambiguous "parametric center" C

can be defined:

C � Q
1
2

,
1
2

� U M P M t V  where U � V t
�

1
8

1
4

1
2

1
.

(17)

Based on the above, we can derive
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C �
1

64
1 3 3 1

p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33

1
3
3
1

 (18)

2.7  Patch Distance

We define patch distance to be the distance between the origin of the ray and the center of a given

patch.  Given two points P1 � x1 , y1 , z1 and P2 � x2 , y2 , z2 in 3-space, the distance between

them is normally defined by an L2 (Euclidean) metric:

d � x2 � x1
2 �

y2 � y1
2 �

z2 � z1
2 (19)

However, to simplify the computation, we redefine the distance as an L1 (Manhattan) metric:

d � x2 � x1
�

y2 � y1
�

z2 � z1 (20)

The distance computation from the ray origin must also include a sign.  Positive signs indicate

positive ray parameter (t) values.  If the cosine of the angle between D and the vector from O to C

(given by 
C � O � D

C � O D
) is positive, the ray points towards (i.e., may hit) the patch, otherwise it

points away from (i.e., definitely misses) the patch. 

Again, since we are only interested in the sign of the cosine, all we need to calculate is (C-O)⋅D, so

we can sort patches using the signed ray/patch distance

d p
�

d if C � O � D � 0

� 1 if C � O � D � 0
(21)

Using -1 as a flag allows us to remove that particular candidate from further processing.
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2.8  The Culler

In our intersection algorithm, each of four patches is divided into four subpatches, a total of 16

subpatches.  Each subpatch is then evaluated to see if its convex hull intersects with the ray (see

Section 2.1).  From all qualifying subpatches, the Ni (at most) with the shortest ray/patch distance

will be selected for further approximation.  The sorting task is accomplished using Quicksort, a

standard sorting algorithm with
�

n lg n run time efficiency on an input array of size n.  This

combination of sorting and selection constitutes the "Culler" module.

2.9  Summary: An Algorithm for Finding the Ray/ Patch Intersection

We now present an implementation of the ray/patch intersection algorithm described in Section 2.1.

As mentioned above, we have taken Ni to be 4.  We also use intermediate buffers to hold patches.

1. Subdivide the input patch into four subpatches (Section 2.4) and put them into buffer1, which

can store at most four subpatches.  Generate planes U and V from the ray parameters (Section

2.3).

2. If the desired number of iterations is reached, go to Step 5.  Otherwise, subdivide each patch in

buffer1 into four subpatches (Section 2.4) and store them in buffer2, which can hold at most 16

subpatches.

3. Evaluate each patch in buffer2 by hull classification (Section 2.5).  Calculate the centers of the

patches (Section 2.6) and their distances to the origin of the ray (Section 2.7).  

4. Sort the patches in buffer2 to find the four patches closest to (but not "behind", i.e. t ≥ 0) the ray

origin (Section 2.8) and put them into buffer1.  Then go back to Step 2.
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5. Output the center of the closest of the four subpatches.

Assuming that there is an intersection point, after n iterations the resulting subpatch will be

approximately 1/2n of the original (linear) patch dimensions.  As long as the input patch is

reasonably small, the four final subpatches will converge to a tiny area, the center of the closest of

which will be considered the intersection point.

2.10  Test of the Proposed Algorithm

In order to verify our algorithm, we developed a user interface in which the user can specify

arbitrary rays and patches.  Using the standard "teapot" patches as the benchmark, we also

compared the results obtained from our algorithm with those from Nishita's algorithm [9] (based on

the Bézier clipping technique).  We found that the intersection points generated by the two

algorithms are within the accuracy specified for the Bézier clipping approach.

3  Functional Building Blocks and the System Architecture

In this section, we first define the functional building blocks required by the algorithm discussed in

Section 2.  We then propose a pipelined system architecture to implement this.  Our purpose here is

to specify the functionality of each building block as well as the structure and operation of the

overall system, rather than the hardware/software boundaries and implementation details.

3.1  Functional Building Blocks

All the functional blocks required by the proposed ray/patch intersection algorithm are listed in

Table 2.  After coding them as C functions, we obtained the execution times shown in Figure 9.

These were measured on a PC Workstation with a 350MHz Intel Pentium II-MMX processor using
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the WindowsTM NT 4.0 operating system with networking activities disabled and the Visual C++

compiler version 6.0 with the Maximize Speed option on.

These data reveal the load distribution among the different computing tasks and serve as guidelines

for balancing the pipeline stages and determining the hardware/software partition.

3.2  System Architecture

Based on these functional building blocks, the overall system architecture for physical

implementation of our algorithm is shown in Figure 10, where the block M2 contains three

functional blocks listed in Table 1: HullClassification, PatchCenter, and PatchDistance.

The proposed architecture contains eleven pipelined stages.  Stage 0 executes Step 1 of the

algorithm; Stages 1 to 10 execute the loop body of the algorithm.  They are identical except that

stage 10 outputs centers of the last four subpatches that will be taken as the intersection points.

Within each stage, the inherent parallelism of the algorithm is exploited by the functional building

blocks.  The number of stages was determined based on observations of the algorithm’s

convergence rate during the software emulation process.  Throughput of the overall system will be

determined by the latency of a single stage.

Note that this architecture illustrates the datapath stream of our algorithm with coarse-grained

pipeline stages.  It is open to refined intra-stage pipelining and hardware/software partitioning,

based on specific performance requirements and implementation constraints determined by different

applications.
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4  Performance Analysis

Our evaluation results were obtained from experiments except for the culler module (which was

identified as the computational bottleneck and thus implemented in hardware).  All the other

functional building blocks were implemented in software and executed on off-the-shelf

TMS320C6701 (hereafter “6701”) digital signal processors (DSPs). We chose the 6701 because it is

representative to the latest generation of high-performance DSPs, and its development tools are

readily available.  Although our analysis is based on a specific implementation model, it provides a

good insight for future efforts in physical implementation.

4.1  Code Optimization for the Functional Blocks

All function calls listed in Table 1 were coded and optimized using the 6701 development tool set

Code Composer Studio.  When profiling the function calls, all data are declared as single precision

floating-point numbers, and all data storage was kept word-aligned.  We took multiple steps to

optimize the function calls.  The functional block PatchSubdivider is used as an example to show

the procedure and effectiveness of the optimization techniques.  Table 2 lists the optimization

techniques applied and Figure 8 shows the function’s 6701 runtime after the application of each

technique.

Source code for all the other functional blocks was optimized in a similar fashion.  Runtimes of the

optimized function calls on 6701 are listed in Table 3.
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4.2  An ASIC Realization of the Culler Module

From Table 3, it is clear that Culler optimized for the 6701 is still the computational bottleneck of

the proposed algorithm.  Consequently, a hardware implementation of that module became

necessary.

To increase the sorting efficiency and reduce the memory requirements, ray/patch distance is used

as the sorting key.  In order to identify its corresponding patch, each sorting key must carry a tag, as

shown in Figure 11: the ray/patch distance in IEEE 754 single precision floating-point format

occupies bits 0 to 31 and a 4-bit Patch Index is prepended to the beginning (bits 32 to 35).

Two basic functional units are defined for the sorting task: upsort and downsort.  Both units take

two sorting keys a and b as inputs, and have two outputs labeled up and down.  For the unit upsort,

its up output is max(a, b) and the down output is min(a, b); for the unit downsort, its outputs are

defined oppositely.  As the sorting task has been identified as a computational bottleneck (see

Figure 9), symbols, schematics and function tables of the upsort and the downsort are shown in

Figure 12 for possible ASIC realization.  Note that, since a negative ray/patch distance (when bit 31

in Figure 11 is 1) means the ray runs away from the patch (see Section 2.7), it is always treated as

"greater" than a positive distance and therefore will be eliminated by the Culler.

The logic expressions for the signal upsel are upsel � a 31 b 31
�

GT and

downsel � b 31 a 31
�

GT in upsort and downsort, respectively.

Using upsort and downsort as elements, a bitonic sorting network is constructed as shown in Figure

20.  It inputs 16 sorting keys and outputs the tags of the four keys with the smallest ray/patch
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distance values.  Sorting elements in the dashed blocks are not required since only four (= Ni)

outputs are needed.

Based on the bitonic sorting network, Culler can be completed as shown in Figure 13.

Without affecting timing, a scaled-down (12-bit) version of Culler was implemented using Xilinx

FPGA devices (XC4025E).

The total delay of the 10-stage sorting network is at most 800ns without any intra-stage pipelining.

4.3  Performance Estimation

Using the overall system architecture proposed in Section 3.2 as the framework, different

implementation cases have been studied.

In this implementation, performance estimation based on a fine-grain pipelined implementation is

discussed here.  Each of the pipeline stages shown in Figure 22 is divided into five substages and

contains multiple 6701s except Substage 5 (the Culler), which is implemented in hardware as

discussed in Section 4.2.  The refined pipeline stages are illustrated in Figure 13, and the detailed

information on Stage 1 is given in Table 4, where the performance estimation is based on the

execution time required by Substages 1 and 2 as they have the largest latency.

This implementation leaves a lot of room for further expedition of the execution.  For instance,

optimizing the code for the function SplitInHalf at the assembly language level could reduce the

number of 6701 cycles required by Substages 1 and 2 and thus the pipeline cycle time could be

shortened.
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5  Conclusion

In this study, we have presented an algorithm for solving the ray/Bézier patch intersection problem.

Although its computational complexity is on the same order of some other known algorithms, the

proposed algorithm has the advantage of being suitable for parallel and pipelined execution. The

corresponding systems architecture for physical realization has also been developed with all the

functional building blocks specified.

We profiled computing tasks required by this algorithm on the 6701 DSP and identified the

computational bottleneck. To eliminate the bottleneck, we proposed and verified a hardware

solution.  We obtained performance data based on two implementation models built with the 6701s,

with and without additional custom hardware. These show that with the proposed algorithm, more

than one million ray-patch intersections per second could be achieved on specially-designed

computing systems based on the proposed architecture, with the pipeline stages being refined and

the inherent parallelism of computing tasks inside the pipeline stages being supported.

The data also suggest that higher performance can be achieved by optimizing the code at assembly

level (for functional blocks implemented in software) or more efficiently, by replacing the

functional building blocks with custom-designed hardware.

We anticipate that with the current level of rapid technological advances, practical systems based on

this study could be built in the near future.
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Figure 1: A Ray/Patch Intersection
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Figure 2: The Control Mesh of a Bézier Patch
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Figure 7: Plane Generation
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Figure 9: Execution Times of Various Functions
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Figure 10: Proposed System Architecture
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Figure 11: Format of the Sorting Key
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Figure 12: Symbols and Schematics for Functional Units
upsort (left) and downsort (right)
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Figure 13: Substages Inside a Typical Stage in Implementation Case 2

Patch subdividor

Patch

P00

P01

P10

P11

Split in
half

Split in
half

Split in
half

intra-stage 1 intra-stage 2

Hull
Classify

U-plane intersect Patch-
center

V-plane

 Origin

Patch

Distance

center

distance

Direction

C
u

lle
r

intra-stage 3 intra-stage 4 intra-stage 5



- 32 -

Figure 14: The Culler Module
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Name of Function Description
PlaneGenerator generate the two planes U and V from

a given ray
PatchSubdivider divide an input patch into four

subpatches
HullClassification execute the task of hull classification 

in Step 3 of the algorithm
PatchCenter calculate the center of a given patch
PatchDistance calculate the distance from the patch 

center to the ray origin
Culler sort out 4 subpatches nearest to the 

ray origin from 16 candidates

Table 1: Functional Building Blocks for the
Ray/Patch Intersection Algorithm
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Step 6701 CPU
 cycles

Optimization Methods Applied

1 11478 None

2 9018 declare parameters as const type

3 7803 file-level optimization by compiler

4 1284 invoke software-pipelining ;
eliminate divide routine call by replacing multiply 

5 1257 loop unrolling

6 317 force constant in expression to float

7 243 speculative execution

Table 2: Optimization Procedures on the Function Call PatchSubdivider
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Name of Function Call 6701 CPU Cycles Comments

PatchSubdivider 243

PatchCenter 102

PlaneGenerator 36

HullClassification 112 on one plane

PatchDistance 28

Culler 3081

Table 3: Runtime of Optimized Function Calls on the 6701 DSP
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Substage
s in Stage

1

Number
of 6701s
used in

each
substage

Function calls
executed by each

6701

Number of 6701
clock cycles

used
(6 ns/cycle)

Pipeline
Cycle

in seconds

Overall
system

throughput
in RPI/s

1 4 SplitInHalf 182
2 8 SplitInHalf 182 1.092 x 10-6 9.16 x 105

3 32 HullClassification 112

4 16 GetPatchCenter
GetDistance

130

5
None

(done in
ASIC)

Culler
N. A.

(800 ns delay)

Table 4: Performance Estimation Based on Implementation Case 2


