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ABSTRACT

This paper presents a new subdivision scheme called “star-
flower subdivision”. Like other well-known subdivision
schemes, such as Catmull-Clark (based on quadrilaterals)
and +/3-subdivision (based on triangular meshes), it also
generates smooth objects after a few iterations.

This scheme has advantages over previous schemes, however,
due to a slower increase in polygon complexity. It subdivides
quadrilateral meshes by a factor of 3, not 4, at each iteration.
Having the number of facets increase more gradually allows
designers to have greater control over the resolution of a
refined mesh.

We call star-flower subdivision “semi-stationary” because
different subdivision rules occur on alternating levels of re-
finement.

We also present a strategy to handle boundaries when ap-
plying the odd iterations of the scheme.

Categoriesand Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; 1.3.6 [Computer Graphics]: Methodol-
ogy and Techniques

General Terms

star-flower subdivision
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1. INTRODUCTION

Subdivision is a popular technique for generating smooth
curves and surfaces for geometric modeling and computer-
aided design. The first subdivision scheme published by Cat-
mull and Clark[2] in 1978 generates B-spline surfaces which
guarantee C? continuity on regular quadrilateral meshes.
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Later that year, Doo and Sabin[4] analyzed the behaviour
of such surfaces near extraordinary vertices (vertices whose
valence does not equal 4).

Lately, the role of subdivision schemes has become
more and more important in 3D modeling due to its
use in animation[3]. Several famous schemes such as
Loop[7] and Catmull-Clark[2] are now provided to model-
ers and geometric designers by commercial software such
as Alias|Wavefront Maya™ | SoftImage|XSI™™, or NewTek
LightWave 3DT™ | because subdivision possesses several at-
tractive features:

Locality New vertices are created from nearby neighbors
with certain weights, i. e. computing averages of
neighboring vertices. The old vertices change their
position by using simple smooth operations which also
deal with their surrounding vertices. Hence, no global
functions need to be solved.

Arbitrary Topology Subdivision generates piecewise
patches from arbitrary initial meshes by a sequence of
refinement. There is no need for trimming or main-
taining smoothness or continuity between surfaces
patches.

Efficiency and Simplicity Another great advantage of
subdivision algorithms is that they only adopt a small
number of rules, usually in the form of linear opera-
tions, to refine a set of vertices.

The goal of this paper is to present a new subdivision scheme
based on quadrilateral meshes. While it shares features with
older subdivision schemes, which we discuss in Section 2, it
offers the advantage of slower, more controllable refinement.
In Section 3, we describe all rules for implementing the semi-
stationary scheme, which we call “star-flower subdivision”.
Section 4 describes the problem we encounter near bound-
aries and proposes a natural and simple strategy to deal
with it. Section 5 compares the results for different subdi-
vision schemes. Finally, in Section 6 we summarize the new
scheme and mention some interesting directions for future
work, some of which is ongoing.

2. RELATED WORK

There are two types of subdivision methods for arbitrary
topology control meshes: approximating and interpolating.
The easiest way to distinguish one from the other is to check



Figure 1: Notation for the Catmull-Clark scheme.

whether the position of the original vertices of a control mesh
are changed or not on every iteration[11]. If the old vertices
are updated by averaging their neighbors, the scheme is ap-
proximating. Otherwise, it is interpolating[12, 11].

In this section, we briefly mention the two approximat-
ing subdivision schemes which motivated us to develop our
scheme.

2.1 Catmull-Clark Subdivision

One of the first subdivision schemes introduced by Catmull
and Clark[2] is based on using quadrilaterals to generate B-
spline surfaces on regular meshes. On a quadrilateral mesh,
vertices whose valence is four are referred to as “ordinary”
and other vertices are referred to as “extraordinary”.

Several researchers have enhanced the original scheme with
special features[5, 3] and analyzing its behavior around ex-
traordinary vertices[4, 9, 1].

Briefly, the scheme is as follows:

1. Create face vertices from the mean of all old vertices
v; bounding each face as Figure 1 shown:

fo= vo +v1 + v2 + U3
0= 4

2. Create new edge vertices from the mean of two old
vertices that define the edge and two new face vertices
of the surfaces sharing the edge.

_vi4vi+ fo+ fitr
o 4

€
where j = (¢ +1) mod 4

3. Create new mesh vertices from the weighted mean of
old vertices, midpoints of old edges, and new face ver-
tices by certain weights.

’U0+2E+(n—3)F

n

’
Vg =

where n is the valence of vg, E is the mean of all mid-
points (e;) of edges incident to v, and F is the mean
of all new face vertices (f;) of faces sharing vo.

So each face is split into four subfaces after each iteration.
The traditional subdivision methods are usually based on a
1-to-4 split operation, called a “dyadic split”: after k itera-
tions, each algorithm creates a mesh M}, from the original
control meshes M, and the number of polygons in M; will
be 4* times of that in M.

2.2 /3 Subdivision

A new subdivision scheme presented by Kobbelt[6] has a
more gradual refinement at each iteration. This scheme,
called /3 subdivision, is based on triangular meshes and
splits every original triangle at each refinement into three
subtriangles.

Because it generates nine sub-surfaces (a “triadic” split) af-
ter a double application, a single iteration is considered as
the “root” of a triadic operation, hence the name. The rules
for this scheme are:

1. Create new face vertices from the mean of all old ver-
tices which bound a face:

fo=

vo + V1 + V2
3

2. Create new vertices from the weighted mean of the old
vertex and its nearest (“1 ring”) neighbors:

1
v; = (1 —a(n;)) vs +a(m)n Z u
wEN (v;)
where
4 —2cos ()
9

N(v;) is the set of all vertices immediately adjoining
v; (on the border of its 1-ring) and n; is dim(N(v;)),
the size of N(v;).

Qp =

3. After inserting a new vertex for each face and connect-
ing it to three (old) vertices which define the face, flip
the original edges such that there are connections be-
tween each new face vertex and the new face vertices
adjacent to it.

While it has much in common with other well-known sta-
tionary subdivision schemes, such as simplicity, locality, and
efficiency, the advantage of this scheme is the slower increase
of the mesh complexity.

3. THE STAR-FLOWER
SUBDIVISION SCHEME

We here propose another triadic subdivision method that
can generate smooth surfaces from meshes of arbitrary topol-
ogy. After initialization, the rules of this scheme alternate:
one set for odd and one set for even iterations.

3.1 Initialization

If the given mesh is not already a quadrilateral mesh, it
needs to be converted to one by the following procedure,
described in [10] and illustrated in Figure 2:
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Figure 3: Star-Flower Subdivision — Odd Iterations.

Figure 2: Converting an N-gonal Mesh to a Quadri-
lateral Mesh. The example shows the conversion of
a triangle to three quadrilaterals, but the algorithm
is suitable for arbitrary N.

1. Compute a midpoint (C) of each face by taking the
mean of its surrounding vertices.

2. Compute the midpoint (E;) of each edge surrounding
that face.

3. Join each original vertex with vertices defined by the
face midpoint and its adjoining edge midpoints.

Once we have a quadrilateral mesh, we designate half the
vertices as “star” vertices and the other half as “flower”
vertices so that each star vertex has only flower vertices
as nearest neighbors and vice versa. If there were no ex-
traordinary vertices and a regular geometry, these would be
arranged like red and black squares on a checkerboard.

3.2 0Odd lterations

On this iteration, each face will create two new vertices we
refer to as “odd”. Each new vertex is connected topologi-
cally to one star vertex and two flower vertices as shown in
Figure 4.

To create the odd vertices, we start with the mean of the
surrounding four vertices. We assign this a weight of % and
combine it with a weight of % for each star vertex. Hence,

1 1 1 1
= —Fo+-Fi+= = 1
Oo glo+ gF1+ 55+ &5 (1)
1 1 1 1
01 = ZFy+-F1+=S0+ =51

6 6 6 2
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So

Figure 4: New Face Vertices Inserted During an Odd
Iteration. Inserted vertices are shown as solid dots.

After the generation of the odd vertices, we replace each old
(star or flower) vertex by a weighted average of its old value
and the adjacent odd vertices:

1
F = (1—an?F)Fi+an?FW Z U (2)
M w€ENO (F;)
1
S: = (1—anios)Si+anioan Z u

' weNO(S;)

where i € {0,1}, N°(F;) consists of O; vertices in faces
adjoining F;, nf¥ = dim(N°(F)), n® = dim(N°(S))),
and we have intuitively chosen a, to be %
‘We need to preserve quadrilateral connectivity at every iter-
ation, so we replace the old connectivity by connecting each
new vertex to the flower vertices of the same face and also
to the corresponding star vertex used in (2).

The whole procedure is shown in Figure 3.

3.3 Evenlterations

Due to the “distortion” of the mesh topology during odd
iterations, the “even” iterations use quite similar rules to
recover the desired scaled-down version of the original topol-
ogy. To do this, we use the same overall rule as for the odd
iteration: Insert two new vertices (which we now call “even”
vertices) for each face.

Figure 5 illustrates the first phase. Two even vertices, Fo
and E1, occur inside “flower petals”, using the same weights



Figure 5: Inserting New Vertices and Faces During
Even Iterations. Inserted vertices are shown as solid
dots.

as for the odd iteration:

1 1 1 1

Ey = F0+600+6F1+601 (3)
1 1 1

E, = F1+ 00+6Fo+ ~01

Two other even vertices occur inside “star points”, again
with the same weights as for the odd iteration:

1 1 1

E2 = 556"‘ 600+ 6F0+ 02
1 1

B3 = 5F5+ =00 + So+ 02

After getting the even vertices, we need to update each old
(flower, star, and odd) vertex with the mean of the even
vertices surrounding it. We separate the old vertices into
two groups: odd vertices (O;) and star/flower vertices (F;
and S;).

The updated star and flower vertices apply the same weights
as during odd iterations:

1
Fy

(1—a,r)F +a,r
ST = (1—a,s)Si+a,s

where N(F}) is the set of new vertices immediately adjoin-
ing F/, n{ is dim(N(F})), N(S}) is the set of new vertices

Subdivision — Even Iterations.

Fo

Figure 7: Replacing Old Vertices During Even Iter-
ations.

immediately adjoining S}, n7 is dim(N(S})), and ay, is the
same as for the odd 1terat10n Figure 7 shows these new
vertices schematically.

Because the odd vertices have a fixed valence (3), we apply
a special weight for them. We choose 8 = a3 = % since O}
has a valence of 3, but use it to weight the four even vertices

that will become its neighbors:

=(1-8)00 + ,3%(E0 + E1 + Ey + Evo) (5)

Empirical results show that this leads to surfaces that be-
come very smooth after a few iterations.

Finally, in order to regain the original connectivity, edge
creation during even iterations is starting from all even ver-
tices to their two (topological) vertical and two horizontal
neighbors as shown in Figure 8. For example, in the “flower
petal”, E; connects horizontally to Oj and FEg and links
vertically to O} and E3. In the “star point”, E> connects
horizontally to S§ and E3 and links vertically to O and O5.

The whole procedure for even iterations of star-flower sub-
division is illustrated in Figure 6. By performing the odd
and even iterations successively, we can generate extremely
smooth objects within a few iterations.

If further iterations are desired, all (new) odd and even ver-
tices, together with (updated) star and flower vertices form
a set of vertices on a quadrilateral mesh which must again



Figure 8: Reestablishing Connectivity for New Face
Vertices During Even Iterations.

be partitioned into star flower vertices as described in Sec-
tion 3.1. The iterations may then proceed.

3.4 Analysis

After a single pair of odd and even iterations, star-flower
subdivision performs a triadic split, increasing the face count
by a factor of 9. Contrast this with two iterations of the
Catmull-Clark scheme, which increases the face count by
a factor of 16. The smaller face factor implies a higher de-
gree of controllability of the tradeoff between face count and
smoothness.

In addition to the gradual refinement, star-flower subdivi-
sion also contains several features of other schemes:

Locality It is local: When generating new vertices or re-
placing old ones, the star-flower scheme only uses a
small number of neighbors.

Arbitrary Topology The scheme works for vertices of any
valence in closed meshes. (We will discuss meshes with
boundaries in the next section.)

Efficiency and Simplicity Its rules are simple and sym-
metrical: Insert two new vertices and reconnect the
topology on each iteration.

An additional feature, common with other quadrilateral
mesh-based subdivision schemes, is the ability to take ad-
vantage of vertex sharing (i.e., triangle stripping) to draw
each face as two triangles with four vertices without resort-
ing to strip optimization algorithms.

4. BOUNDARIES

As we have shown, star-flower subdivision works quite well
on closed meshes. We can refine such objects to any degree
we like. In the case of objects with boundaries (or holes)
however, there is a special situation near borders. Figure 9
illustrates it.

We start with a boundary face as indicated in the left di-
agram. As illustrated in the middle diagram, after an odd

Figure 9: Star-Flower Subdivision Near Boundaries.

iteration, each old boundary face generates one new face
(shown in red) and, depending on how many boundaries the
original quadrilateral contains, one to three triangles, each
of which has one edge on the boundary.

There is no way to find face-mates which share the bound-
aries, as they do not exist. Consequently, we can’t generate
any new face points so that the new boundary face has four
vertices after odd iterations. The natural solution for this
problem is to do nothing for new boundary surfaces during
those iterations, i. e., preserve triangular faces and mark
them as boundaries.

‘We can still recover a triadic split operation on even itera-
tions by computing two new face points. Due to the missing
face vertices that the odd iteration did not generate, the
weights of new face points in the boundary faces are slightly
revised:

b 24, 2,
E() — 9F0+ 950+ 907, (6)
2 5 2

where Fj and S are boundary vertices and Eo and E; are
new face points, which are close to Fj and S, respectively.

The right diagram of Figure 9 shows the result.

5. RESULTS

To demonstrate our scheme, we have applied it to several
different objects. Figure 10 shows its application to a col-
lection of simple meshes. To make a clearer comparison
of star-flower and Catmull-Clark schemes, Figure 11 shows
successive refinements of a wireframe cube (with hidden sur-
faces removed). Note the smaller polygon count for the star-
flower scheme. Figure 12 compares star-flower with /3 sub-
division applied to the canonical Stanford bunny.

6. CONCLUSIONS AND ONGOING WORK

We have proposed star-flower subdivision, a new semi-
stationary subdivision scheme which generates smooth sur-
faces based on quadrilateral meshes, with a slower increase
of polygon count upon refinement than previous work. At
the same time, star-flower subdivision maintains the same
advantages of locality, simplicity, efficiency, and arbitrary
topology as previous schemes. We modeled several different
smooth objects using this new scheme.



Although all of our experimental results show the qualita-
tive smoothness of objects, analysis[8, 6] to prove the scheme
generates at least C*-continuous surfaces for regular vertices
(those whose valence is equal to 4) is a necessary of future
work, and is now under way. In addition, we will also at-
tempt to prove Cl-continuity near extraordinary vertices,
probably by using Fourier analysis[4, 1]. Additional require-
ments for practical application, such as sharp creases|[3], sur-
face texturing, and the modifications of weights for bound-
aries and old vertices are also part of our anticipated future
work.
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