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Abstract

We present a representation for reflectance, especially
measured reflectance data, that is both smooth and time-
efficient. By fitting a multi-level B-spline approximation
to bidirectional reflectance distribution function (BRDF)
data, we can obtain a continuous function that matches
the data to arbitrary precision. This algorithm shows very
good time efficiency both constructing as well as evalu-
ating the fit. Synthesized images show the accuracy and
the smoothness of the fit BRDF. The finer level of fitting
we use, the higher accuracy we can achieve. Our results
compare favorably with other schemes currently in wide
use.

One shortcoming of our method is the amount of stor-
age required. We present one approach that addresses this,
a bi-level representation combined with hashing.

1 Introduction

In computer graphics, the interaction of light with a sur-
face is typically described by a bidirectional reflectance
distribution function (BRDF). The BRDF represents all
visible properties of the surface at the sub-textural level.

A BRDF is a function of an incident directionS and
a reflected directionV, defined on the upper hemisphere

∗This is an approximate reconstruction of a paper (no longer obtain-
able) presented at the Thirteenth Western Computer GraphicsSympo-
sium (Silver Star, British Columbia; March 24-27, 2002), which should
be the cited reference.

ΩN surrounding the surface normalN symmetrically. It is
a ratio of the reflected radiancedLr in a given reflected
direction to the irradiancedE coming from an incident
direction. We denote the BRDF asfr(S,V). Hence

dLr = fr(S,V)dE. (1)

The irradiancedE of a source in directionS subtending a
solid angledωi can be represented as:

dE(S) = Li(S) cos θi dωi, (2)

whereLi(S) is the incident radiance in the directionS,
θi is the incident polar angle (cos θi = N · S) anddωi is
the amount of solid angle subtended by the source. The
total reflected radianceLr in the directionV is obtained
by integrating the irradiancedE(S) over all directions on
ΩN:

Lr(V) =

∫

ΩN

fr(S,V)Li(S) cos θi dωi. (3)

Typically, the directionsS and V are represented with
spherical coordinates, i.e., a polar angleθ and an az-
imuthal angleφ. The BRDFfr would then be a func-
tion of four parameters,fr(θi, φi, θo, φo), where(θi, φi)
representsS and(θo, φo) representsV .

The BRDF for a perfectly diffuse reflector (a Lamber-
tian surface) is constant, while an ideal mirror specular
reflector has Dirac delta functions in its BRDF, with the
only non-zero direction being the reflection of the viewing
direction.

1



There are two overall ways to derive a BRDF. One way
yields an analytical formula, either from from an ad-hoc,
intuitive model or a physically-based model. The other
way is to collect data: measure the reflectance for a given
material under laboratory conditions.

We present here a method to represent any (especially
measured) BRDF data. We apply a modified form of the
B-spline based approximation algorithm presented by Lee
et al. [17] to fit the measured data.

In Section 2, we will review previous work on BRDF
representation and explain the approximation algorithm
we use. In Section 3, we describe the application of the
approximation algorithm to publicly-available measured
BRDF data and show the results of the fit. We improve
the method by deriving a sparse representation which in-
corporates minimal perfect hashing to reduce storage and
minimize time requirements in Section 4. Section 5 con-
cludes the paper.

2 Previous Work

Many researchers have addressed the problem of repre-
senting reflectance. In this section, we will review some
of the more popular representations and also briefly de-
scribe the approximation algorithm we will adapt for our
use.

2.1 A Brief History of Reflectance Modeling

BRDFs used in computer graphics are produced in one of
two ways: analytic derivation or direct measurement. We
can further categorize the analytical derivation approach
into two subclasses: ad-hoc models and physically-based
models. We will discuss each category in roughly chrono-
logical order.

2.1.1 Ad-Hoc Analytical Models

Ad-hoc models are created out of a need to exhibit ob-
served or expected behavior. Their derivation does not
involve physical considerations.

Phong[23] presented a model that was designed to cap-
ture the behavior of roughened surfaces by raising a co-
sine to a user-specified power and scaling the result by
a user-specified coefficient. This model is relatively old

and not physically correct, but still widely used in com-
puter graphics because it produces fairly good images, is
computationally inexpensive, and, with some experience,
is easy for the user to control.

Blinn[1] modified Phong’s work by introducing a
“halfway vector”: the normalized mean of the viewing
direction and incident light direction. Whether to use a
Phong or a Phong-Blinn model is often the choice of the
hardware or rendering package implementer.

Lewis[18] derived physically plausible representations
of these models. “Physically plausible” is a weaker con-
straint than “physically based” in that it accepts forms of
reflectance models which cannot be ruled out on the basis
of energy conservation and reciprocity.

2.1.2 Physically-Based Analytical Models

As graphics capabilities expanded, so did the need for
realism in images. We would, however, assert that
physically-based models predate ad-hoc ones, as we
must in fairness consider the work of Lambert[15] to be
physically-based. Lambert’s derivation was based upon
reasoning about the nature of reflectance. Lambert’s Law,
which is that the amount of light reflected on the surface
is independent of the viewer’s direction and depends only
on the angle between the incident light direction and the
surface normal, is still widely used for diffuse objects and
has even been “extended” by Oren and Nayar[22] to non-
diffuse surfaces.

For non-diffuse cases, Cook and Torrance[3] derived
a model based on geometrical optics, assuming specular
V-grooves and incorporating masking and self-shadowing
effects. Schlick[24] extended this model with a more
comprehensive one that has seen considerable use in the
literature.

He et al. [10] extended the Cook-Torrance model to the
region of physical optics. This takes into account polar-
ization, surface roughness, masking, and shadowing and
is given by a single formula which consists of specular,
directional diffuse, and uniform diffuse terms.

A physically-based model usually incurs greater com-
putational cost than a non-physically-based one. Fur-
thermore, it can be difficult to control – to “model” –
physically-based parameters to obtain a desired material
appearance.
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2.1.3 Data-Driven Models

With the advent of image-based rendering in recent years,
another popular way to represent reflectance has arisen:
approximating or interpolating measured data or data
computed from a more complex analytical model. The
mathematical representation used derives neither from
qualitative desirability or control needs as in the case of
the ad-hoc methods nor from a rigorous physical deriva-
tion as in the case of the physically-based methods. In-
stead, it comes from finding an efficient and compact fit to
the data itself: It is “data-driven”. Some of these enforce
physical plausibility, which is certainly desirable when fit-
ting real-world data.

Ward[16] simplified the geometric attenuation and
Fresnel factors from the Cook-Torrance model into one
normalized parameter and incorporated them into a Gaus-
sian lobe model. In addition, he incorporated two rough-
ness parameters into an elliptical Gaussian model, suc-
cessfully fitting data he had measured on his own appara-
tus.

Other popular representations use basis functions. As
a BRDF is generally represented as a function of spher-
ical coordinates, it is natural to use a basis function de-
fined over spherical coordinates. Westin et al.[27] and
Sillon[26] represented a BRDF as a weighted sum of
spherical harmonics. Westin’s model can represent both
isotropic and anisotropic BRDFs. To obtain an accurate
representation of specular data, however, these models re-
quire many terms.

Schr̈oder and Sweldens[25] show how to build
“second-generation wavelets” which make it possible to
define wavelets on nearly arbitrary domains. As an ex-
ample, they represent a BRDF with wavelets defined on
sphere. Their implementation uses fewer coefficients than
spherical harmonics and coefficients can be computed ef-
ficiently, but their approach only uses wavelets for two
degrees of freedom. In addition, the evaluation time of
their BRDF model depends on the wavelet’s resolution.

Koenderink et al.[13] constructed an orthonormal ba-
sis based on the Cartesian product of the hemisphere by
mapping Zernike polynomials onto a unit disk. They then
project the BRDF into this vector space. Zernike poly-
nomials appear to offer some advantages over spherical
harmonics, but still require more terms to capture greater
specularity.

Lafortune et al.[14] represented a BRDF as a non-linear
summation of powers of cosine lobes. It may be consid-
ered a generalization of Phong’s original formula. This
model can represent important BRDF behavior such as
off-specular reflection and a retro-reflection with small
number of parameters and it is currently a very popular
reflectance model. Owing to it’s use of non-orthogonal
fitting functions via a Levenberg-Marquardt approach,

Some researchers represent a BRDF as a product, rather
than a summation, of functions.

Fournier[9] separates a BRDF into two functions, one
a function of the incident direction and the other of the
reflected direction, using the technique of singular value
decomposition. He then sums the products of these two
functions with weights and applied the results to a Phong
model and to Ward’s experimental data[16].

McCool et al.[21] also used this technique, decompos-
ing a BRDF into products of two or more functions of
lower dimensionality. For their implementation, they de-
compose an isotropic BRDF into three factors, with two
different functions. The value of each function is stored as
two-dimensional texture map and makes use of texturing
hardware.

2.2 N-dimensional Multilevel B-Spline Ap-
proximation

There are many ways to fit data. We have chosen the mul-
tilevel B-spline algorithm of Lee et al. [17] (hereafter,
“LWS”) for these reasons:

• It does not require uniform sampling.

• It is fast to compute.

• It is fast to evaluate.

• Since it uses cubic B-splines, the fit isC2 continu-
ous.

LWS first develop a “basic approximation” (BA) algo-
rithm. We describe here its essential details.

Let Ψ = {xd|0 ≤ d < D, 0 ≤ xd < N} be a hyper-
cubic rectangular domain inRD. Consider a given set of
scattered points{P} in Ψ. For this point set, we will find
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the fit functionf . f approximates data as a uniform, non-
parametric1, bi-cubic B-spline function, which is defined
by a uniform control latticeΦ overlaid on the integer co-
ordinates ofΨ (and extending slightly outside – see LWS
for details).

Let φj be the coefficient (which may also be thought of
as a “control point”) atj onΦ. f is then

f(x0, . . . , xD−1) = (4)
3

∑

k0=0

· · ·

3
∑

kD−1=0

φ(k0+i0)···(kD−1+iD−1)

Bk0
(s0) · · ·BkD−1

(sD−1),

whereiα = ⌊xα⌋− 1 andsα = xα −⌊xα⌋. TheBα’s are
the usual cubic B-spline basis polynomials. The problem
of findingf is thus reduced to solving for the coefficients
in Φ that approximate the scattered data pointsP .

We will defer to LWS for further details of the deriva-
tion, simply pointing out to the interested reader that their
least-squares solution can be made immediately clear by
considering a hyperplane in a 16-dimensional hyperspace.

The time and space complexity of this algorithm is
O(p + ND), wherep is the number of data points and
ND is the size of the control lattice.

There is a trade off between accuracy and smoothness
with BA affected by the coarseness of the grid, which
is a given. Because this algorithm uses cubic B-splines,
the approximation functionf is C2 continuous and has
local support. If we use a coarse control lattice, then
the coefficients are calculated from many data points and
f has wide support, so we get a smooth approxima-
tion. On the other hand, if we use a finer lattice, then
f has smaller local supports and, hence, a smaller num-
ber of data points affecting the calculation of coefficients.
Hence,f achieves greater accuracy.

To circumvent this situation, LWS went on to present
the multilevel B-spline approximation, which they (and
we) refer to as “MBA”. This algorithm starts from the
coarsest approximation (i.e.,N = 0), which captures the
global shape off . By applying a finer lattice on the do-
main, a finer level of approximation can be obtained.

At the refinement stage, the function approximates the
difference between the approximated data and the original

1f is a function of spatial coordinates directly. A parametric space,
(e.g.,(u, v)), is not involved.

data for the finer lattice. That is, given an initial coarsest
fit f0 to initial datayc, it finds the approximationf1 for
δ1y = yc − f0(x0, . . . , xD−1).

Successively finer levels approximate and reduce the
residual error. The final approximation is defined as the
sum of all levels of fitsfk, i.e. f =

∑h

k=0 fk. The only
user-specified fit parameter is then the maximum levelh,
and with non-pathological data (i.e., allxc’s are numeri-
cally distinct), the least-squared error of the fit decreases
monotonically with increasingh. This makes it possible
for an MBA user to specify a given tolerance and have the
algorithm find the smallest value ofh which satisfies it.

Let ND be the size of finest control lattice,p be the
number of the data points, andh be the maximum level
of refinement. Then the time complexity for the fitting
part the MBA algorithm isO(hp + ND/(1 + 2−D)) and
its space complexity isO(p + ND). LWS also showed
how to subdivide and combine MBA levels to replace a
hierarchy with a single mesh, making the evaluation of
the fit independent ofh (i.e. O(1)).

3 Fitting Measured BRDF Data

In this section, we describe the BRDF databases that we
use, the fit to those data we construct, and our compar-
isons of our results to existing methods.

3.1 BRDF Databases

We use two measured BRDF on-line databases.
Foo [8] measured BRDF data using a custom-built go-

nioreflectometer and his data is available from the Cornell
measurement web site[4]. They measured BRDFs for dif-
ferent wavelengths and each material has more than 1,300
samples. This database contains data for various types of
paint. It also has data for human skin, sampled with a
digital camera [20].

Dana et al. [7] used a robotic manipulator and CCD
camera for their BRDF measurement. Their data is avail-
able from the CUReT database web site [5]. This database
has reflectance measurements for over 60 different mate-
rials, each observed with over 200 different combinations
of viewing and illumination directions. The data is multi-
spectral, with red, green, and blue channels.
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Both the Cornell and the CUReT BRDF databases mea-
sure the BRDF for only half of the upper hemisphere, as-
suming bilateral symmetry. Hence the data we represent
will not only be isotropic (discussed below), but symmet-
ric: fr(θi, θo, φo) = fr(θi, θo,−φo)

2.

3.2 BRDF Parameterization

In the case of an isotropic surface, the BRDF is invari-
ant under rotation around the surface normal. There-
fore, three parameters are enough to represent BRDF as
fr(θi, θo, δφ), whereδφ = φo − φi.

If we map the projection of the incident direction onto
the tangent plane to the positivex axis, thenφi = 0
and δφ would be equal toφo. If the incident direction
were not so aligned, then we can conceptually rotate the
(isotropic) surface element around the surface normal un-
til it is. Hence we may denote the BRDF as a function of
three parameters:fr(θi, θo, φo).

We could parameterize the BRDF strictly in terms of
(possibly scaled) angles, but this would leave us with a
polar anomaly: Our fitting procedure would not realize
thatfr(0, 0, φo) refers to the same point for allφo. Any
fit procedure could therefore produce undesirable artifacts
near normal incidence and reflection. We need to adopt a
coordinate system that avoids this anomaly.

One such, described by Lewis in [19], is “Nusselt coor-
dinates”. He first consider thex, y, andz direction cosines
corresponding to a direction(θ, φ):

µx = sin θ cos φ µy = sin θ sin φ µz = cos θ. (5)

Then he affinely mapsµx andµy to lie between 0 and 1:

κ =
µx + 1

2
λ =

µy + 1

2
(6)

These are the Nusselt coordinates. The mapping
(θi, θo, φo) ↔ (κi, κo, λo) is unique and invertible. By
applying this coordinate representation, a BRDF can be
represented asfr(κi, κo, λo).

An added benefit of Nusselt coordinates is thatµx and
µy (and thereforeκi, κo, andλo) are usually readily avail-
able as part of the scene geometry during rendering: no
inverse trigonometry is required.

2This is different from Helmholtz reciprocity (cf. [18]), which would
hold thatfr(θi, φi, θo, φo) = fr(θo, φo, θi, φi).

3.3 Fitting BRDF Data with
the MBA Algorithm

Fitting either Cornell or CUReT data with the MBA algo-
rithm turns out to be straightforward. Both databases use
spherical coordinates, so we first convert them to Nusselt
coordinates. We then apply a three-dimensional version
of the MBA algorithm to the data.

Once we have the coefficients, to calculate the BRDF
for a given(κi, κo, λo), we need to map the Nusselt co-
ordinate to the grid of coefficients(i, j, k). The control
lattice is of dimension(M +3)×(M +3)×(M +3), and
for the MBA algorithm,M = 2h for the maximum level
h. The gap∆ between each control point is1/M = 2−h.
Hence

i = ⌊κi/∆⌋ − 1 s =
κi

∆
−

⌊κi

∆

⌋

.

Similarly, m, t, n, andr can be determined fromκo

andλo, respectively. So at refinement levelh, the fit is
expressed as

fh
r (κi, κo, λo) =

3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(s)Bm(t)Bn(r)φh
(l+i)(m+j)(n+k),

(7)
whereBl’s are bi-cubic B-spline basis functions and the
φh’s are the coefficients on the lattice of refinement level
h, Φh.

3.4 Quantitative Results

We applied MBA algorithm as described previous subsec-
tion and measured some errors to show the accuracy of the
fit.

We selected data for felt (No. 1), leather (No. 5),
aluminum foil (No. 15) from the CUReT database and
blue latex paint from the Cornell database. Felt shows
a mostly-diffuse surface with slightly-specular behavior
at high incident and reflected polar (grazing) angles .
Leather has a little bit of specularity everywhere and high
specularity at grazing angles. Aluminum foil has high
specularity (See [5] for images of the sampled materials).
Blue latex is largely diffuse but it also has a high specular
peak at grazing angles.

Starting from an initial lattice size of 4 (h = 0), we in-
crease the refinement level and compute error metrics at
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Figure 1: Error Measurements Compared with Lafortune
and Koenderink Models.

each level. To illustrate storage requirements, we also tab-
ulate the total number of coefficients at refinement levelh,
which is(2h + 3)3 (see LWS).

There is some disagreement on what constitutes a valid
estimate of BRDF error, so to evaluate the fits quantita-
tively, we computed several. Results are shown in Fig-
ure 1. The first metric was the root mean square error
(“RMSE” in Figure 1), which is computed as :

RMSE=

√

∑N−1
k=0 (yk − fr(κik, κok, λok))

2

N
(8)

RMSE can be expected to measure how well a fit du-
plicates smooth, diffuse data, but often of more concern
is how well a fit duplicates specular peaks, so we choose
for a second metric the maximum absolute deviation from
the measured data (“MAE” in Figure 1), which is defined
as:

MAE = MAX N−1
k=0 |yk − fr(κik, κok, λok)| . (9)

As (3) shows, BRDF values are dimensionless, but they
are not unitless. (In this case, they have units of ster−1.)
So for a more intuitive grasp of the goodness of the fit,

0 1 2 3 4 5 6

Lafortune   3 Lobes

Koenderink Order 8

Ours    All Level

log10(Evaluation time (nsec))

Figure 2: Comparison of Evaluation Time

h = 3 h = 4 h = 5 h = 6

Figure 3: Varying Refinement Level (h) for Aluminum
Foil. Light is coming from60◦ to the left of the viewing
direction.

we also show a third metric, the maximum relative error,
which is the maximum ratio of the absolute error to the
maximum (absolute) sample datum (“MRE” in the Fig-
ure 1).

MRE =
MAX N−1

k=0 |yk − fr(κik, κok, λok)|

MAX N−1
k=0 |yk|

. (10)

To compare our results with those of other models, we
chose two popular contemporary ones. The first is the
one proposed by Koenderink et al.[13] and fit the mea-
sured data with order 8 of their method. The other is the
one proposed by Lafortune et al.[14] with 3 cosine lobes.
Hereafter, we will simply refer to these as “Koenderink
method” and “Lafortune method”, respectively.

In all cases, our level 6 shows greater accuracy than the
other two by a factor of at least a factor of 4 (log10 4 =
0.6 in Figure 1), and usually an order of magnitude. Our
level 4 (which uses much fewer coefficients than level 6)
is comparable to the other two.

3.5 Speed of Evaluation

As the computation of the fit can presumably be done
prior to rendering, it is irrelevant to rendering speed. The
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fit evaluation time is therefore the critical one, so we have
measured it and compared it with those of the Koenderink
and Lafortune models. We measured the mean time of
100,000 function calls for different combinations of inci-
dent and viewing direction. The evaluations were done
on a PC running Linux RedHat 7.2 on an AMD Athlon
1.4Ghz microprocessor with 256 KB cache and 256 MB
system memory. The results are listed in Figure 2.

Generally, representations with summation or products
of basis functions must increase the number of terms to
obtain greater accuracy. This leads to an increase in the
evaluation time as well, which can be observed with the
other methods. On the other hand, the time required for
our MBA-based method doesn’t increase with the accu-
racy of the fit: We still evaluate a4 × 4 × 4 submesh of
the grid.

3.6 Visual Results

Figure 3 shows the synthesized sphere using BRDFs fit by
our method for different refinement levels. As the refine-
ment level increases, the specular region narrows and its
brightness increases. This shows that the fit improves as
the refinement level increases. However, even in level 3
(with 1,331 coefficients), the fit can capture the character-
istics of the surface well. So, if we can sacrifice some ac-
curacy, we can synthesize a fairly reasonable image with
less storage.

Figure 4 shows a synthesized sphere for different mate-
rials with refinement level 6. The image shows the smooth
transition from specular to diffuse and all images show
the expected characteristics of each material. With an ad-
hoc BRDF model, specularity at grazing angles is difficult
to represent, but our model can correctly represent such
specular features, since measured data captures values at
such angles and the fit closely matches that data.

3.7 Storage Requirements

At refinement level 6, the root mean square error and max-
imum deviation get small enough to say that the fit func-
tion matches all the data well. Although the errors at this
level are negligible, the storage requirements are not. Fig-
ure 5 shows the storage requirement (number of parame-
ters) comparison of our method and other methods.

(a) Felt

(b) Leather

(c) Aluminum Foil

Figure 4: Varying Materials and Light Directions. From
left to right, light is coming from0◦ (i. e., coincident),
30◦, 60◦ and90◦ to the left of the viewing direction.

If we use single precision (4 bytes) to represent a coeffi-
cient, we need about 1.2MB of storage to represent the fit
function. This applies to a single spectral channel, so this
number would be tripled for the three RGB coefficients in
a practical application.

Our method requires far more storage than others.
While it doesn’t increase the evaluation time of fit, this
storage requirement is a major disadvantage of the method
as we have described it so far.

0 1 2 3 4 5 6

Lafortune   3 Lobes

Koenderink Order 8

Ours           Level 6

log10(Number of coefficients)

                   Level 4

                   Level 0

Figure 5: Storage comparison with other methods
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4 Compression

In this section we describe how we can reduce the number
of coefficients without sacrificing the accuracy of the fit.

4.1 Decomposing the BRDF into Two Parts

A highly specular material reflects light mostly in the re-
flected direction. Therefore, coefficients that describe re-
gions away from the reflected direction are quite small.
The convex hull property of the B-spline representation
would allow us to “discard” small coefficients, effectively
replacing them with zero, without adverse effects. This
would suggest a sparse representation, storing only coef-
ficients above a certain threshold and assuming the rest
were zero.

On the other hand, a highly diffuse material can be de-
scribed well at a relatively low level of refinement, i.e.,
with a small number of coefficients. The materials we are
trying to represent have properties that range from highly
specular to highly diffuse, so a combined representation
suggests itself.

We partition the fit into two separate fits, referring to
them as the diffuse fitfd and the specular fitfs. fd is
done with a coarse mesh and is non-sparse.fs uses a fine
mesh and is sparse. The BRDF is then the sum of two fits
fr = fd + fs.

The construction of the two fits is straightforward, and
resembles that of the MBA algorithm itself: We construct
fd first and thenfs is fit to the differences between the
data andfd.

An alternative we considered and rejected was de-
scribed in the LWS paper: a hierarchy of sparse fits. The
more sparse fits we have, the longer the evaluation time
required3, and it takes longer to look up the sparse coef-
ficients on a level than it does to simply index the non-
sparse coefficients.

4.2 Technique

A number of choices are available for sparse storage of
fs. We chose to use minimal perfect hashing [6], as im-
plemented by Jenkins [11]. BRDF coefficient storage is

3This would incur the same penalty as that of orthogonal basis func-
tion expansions.

Compression
90 % 95 %

Diffuse Level 3
Number of CPs 31,407 16,369
Total Storage(Bytes) 426,647 366,495

Diffuse Level 4
Number of CPs 36,935 21,897
Total Storage(Bytes) 448,759 388,607

Table 1: Storage Required After Compression. In all
cases, the specular fit was level 6 with single precision
floating point.

ideally suited to this technique, as the database is com-
pletely known at the time of hash table construction and
the time required to construct the table is a secondary con-
sideration at best.

Table 1 shows the number of coefficients and storage
requirements for various bi-level fits. Total storage in the
table includes the coefficients themselves as well as the
overhead required for hashing.

4.3 Results

We applied our compression method to the same BRDF
database as before and measured storage requirement and
errors. In addition, we synthesized spheres with the com-
pressed fit.

4.3.1 Quantitative Results

Figure 6 shows plots of our fit with various combina-
tions of levels and compression percentages contrasted
with the Lafortune and Koenderink methods. We use
(D,S,C) to refer the combination of diffuse level(D), spec-
ular level(S) and compression percentage(C) for the fit.
For example “(3,6,90)” is the fit using level 3 diffuse and
level 6 specular fit and 90% of the coefficients for the
specular fit are omitted.

Even with a diffuse level of 1, our method can achieve
error levels comparable to the other two. Models (3,6,90)
and (4,6,95) compare very favorably. Although (1,6,90)
is in almost all cases as good as or better than Koen-
derink or Lafortune, it suffers in comparison to (3,6,90)
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Figure 6: Error Measurements With Compression Com-
pared to Lafortune and Koenderink Models.

and (4,6,95) because diffuse level 1 just does not cap-
turefd adequately, leaving it to be captured by thefs fit,
and when compression removesfs coefficients, the results
suffer.

One feature not shown in these figures is the presence
of “ringing”: oscillations that are observed in the fit in
regions away from the data points. Similar in nature
to “Gibbs overshoot” observed in Fourier reconstruction,
they are a result of the mismatch between sampling (spa-
tial) frequency and the resolution of the fit function (in this
case, the grid spacing). We have found that ringing can
be eliminated by increasing the size of the diffuse com-
ponent. As even compressed specular data dominates the
amount of required storage, this does not serious affect the
storage requirement. See Kameya [2] for further details.

4.3.2 Visual Results

Figure 7 shows spheres rendered with a compressed fit.
All spheres show a smooth transition from specular to dif-
fuse reflection. The plot shows ringing, however, in the
(1,6,90) fit.

Finally, in Figure 8 we render a more complex ob-
ject with compressed (4,6,95) and non-compressed (level
6) BRDFs. The differences within each pair are unde-
tectable, leading us to the conclusion that compression is
a viable means of reducing storage overhead at no sacri-
fice to image quality.

5 Conclusion
and Future Directions

In this paper, we presented a smooth representation for
measured BRDFs by using a non-parametric multi-level
B-spline approximation to fit reflectance data. The result-
ing fit function approximates the the dataset well. By in-
creasing the size of the control lattice, the algorithm finds
an arbitrarily good fit to the data.

One drawback compared to other methods is the
amount of storage required. We addressed this by devis-
ing a compression scheme which we showed could sub-
stantially reduce storage needs with no visible impairment
in image quality.

As future work, we hope to take better advantage of
the MBA algorithm’s arbitrary dimensionality and extend
this work to anisotropic surfaces, subsurface scattering
(cf. [12]), and texture representation. Furthermore, the
algorithm should lend itself quite well to implementation
on programmable shading hardware.
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(1,6,90) (3,6,90) (4,6,95)

(a) Felt

(b) Leather

(c) Aluminum

(d) Blue Latex

Figure 7: Spheres Rendered with Compressed Fit.
Spheres on the top three rows are lit from30◦ to the left
of the viewer and those on the bottom row are lit from90◦

to the left of the viewer.
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Felt

No compression(Level 6) (4,6,95)

Leather

No compression(Level 6) (4,6,95)

Aluminum

No compression(Level 6) (4,6,95)

Blue Latex

No compression(Level 6) (4,6,95)

Figure 8: Synthesized Bunny Without and With Compres-
sion
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