
Designof aPipelinedArchitecturefor
Ray/B́ezierPatchIntersectionComputation

RobertR. Lewis RenweiWang
�

DonaldHung
Schoolof EECS Schoolof EECS Dept.of ComputerEngineering

WashingtonStateUniversity WashingtonStateUniversity SanJoseStateUniversity
bobl@tricity.wsu.edu dhung2@email.sjsu.edu

26February, 2002

Abstract

We describeanalgorithmfor computing ray/Bézierpatchin-
tersectionsfrom a pipelinedhardwarepoint-of-view. This al-
gorithm usespatchsubdivision and other geometrical tech-
niques to find agivenmaximumnumberof intersectionpoints
nearestto the ray origin. We proposea pipeline-basedhard-
warearchitecture,andverify thenumber of pipelinestagesre-
quiredby simulation.

Keywords andPhrases:pipelining, architecture, ray tracing,
Bézier surfacesACM Computing Classificationcategories:
C.1,C.3,I.3.1, I.3.5

1 Intr oduction

Ray tracingis oneof the most important techniques in com-
puter graphics for rendering high quality and photorealistic
pictures. In it, at leastoneray is castinto the scenefor each
pixel of the image. If the ray hits an object, it may produce
otherrays,suchasreflection,shadow, andrefraction raysto
determine the color of the associatedpixel (see[1] for more
details).Ray tracingdealswith thousands, if not millions, of
suchray-object intersectioncalculations in eachimageandis
thuswell known for its exorbitantcomputationtime.

Xpatch isaprogramthatusesthisgraphicaltechniquetomodel
anincident radarsignalandgeneratetheresultingradar cross-
sectionsof various objects. The objectsurfacesaremodeled
by differentshapeprimitivessuchasmeshesandparametric
patches.Eachtype of primitive hasits own algorithmto de-
termineintersectionwith a given ray. Much work hasbeen
conductedat theAir ForceResearchLab(AFRL) to determine�

Currently at Synopsys,Inc.

whichpartof Xpatch is themosttimeconsuming, findingthat
the majority of the time (between 50% and80%) is spentin
executingthesealgorithms.

Among commonly-usedmodellingprimitives,Bézierpatches
standout for beingable to provide high accuracy of curved
surfaces. Nevertheless,ray/Bézier patch intersection algo-
rithms are computationally expensive. Many attemptshave
beenmadeto improve them. The Bézierclipping algorithm
[9] introducesan iterative geometric algorithmthat finds all
solutions of the ray-patchintersectionproblem up to an user
definable accuracy, but it is hardto determine the number of
iterative stepsneeded for a givenpatch.TheChebyshev box-
ing algorithm [5] replacesanoriginal patchby many bilinear
approximating patches,which will be subdivided into pieces
repeatedlyuntil theoriginal patchhasbeenwell approximated.
Thepreprocessingprocedurerequiredby thisalgorithm usesa
recursive methodto subdivide a given patch. The bounding
volumehierarchy algorithm [3] combinestheprevioustwo by
first carrying out the preprocessingprocedure in the Cheby-
shev boxing algorithmandthencalculatingthetight bounding
volumes.

In [10], oneof usdemonstratedthatthedepthof recursivecalls
using the Bézier clipping algorithm may vary greatly from
patchtopatchandfromrayto ray. Onepatchmayneedadepth
of threecallswhileanotheradepthof eleven, eventhoughboth
resultedin a singleintersection. All theabove algorithmsbe-
have similarly, beingbasedon recursive methods. Evenif we
wereto implementtherecursionby redundanthardware, they
would still not be suitablefor hardware accelerationbecause
of theunpredictableresourceallocationrequired.

Significant efforts to acclerateintersection computationhave
alsobeenmadeon the hardwareside. As reported by Arvo
andKirk in 1989[1], theseinclude:

1

� LINKS-1, a 64-node (Intel 8086/8087) multiprocessor
systemthatcanbeconfiguredasasetof parallelpipelines
to rendera sequenceof images.� Kobayashi’s work distributing theworld databaseamong
a setof intersection processors.� Goldsmith’s work on a general-purpose multiprocessor
systemfor ray-tracingonahypercube.

More recent efforts include:� Bouatouch’s[2] exploitationof cacheandvirtual memory
techniquesto reducemessagepassing,yielding aspeedup
of about 60ona64-nodeMIMD.� Kin andKyung’s [8] ring-structuredmultiprocessors,al-
lowing a linear speedup by partitioning objectsamong
processors.

All the aforementioned hardware solutions are basedon
general-purposearchitectures that are suitablefor executing
any kind of ray/objectintersectionproblems.

Earlier researchconductedby one of us at AFRL in Sum-
mer1998[6] optimized a ray/triangular facetintersectional-
gorithm for hardware realizationandalsoproposedthe cor-
responding hardwarearchitecture. This article may therefore
beconsideredanextensionof thatwork, focussingon a simi-
lar approachfor acceleratingray/Bézierpatchintersection. As
before,efforts havebeenmadeto:

1. Develop analgorithmsuitablefor hardware/softwareac-
celeration.

2. Define the algorithm-specific system architecture for
physicalimplementationin thefuture.

We therefore presenta new algorithm basedon a setof sub-
tasksincluding patchsubdivision andrelatedgeometric tech-
niques to find agivenmaximumnumberof intersectionpoints
thatarenearestto theray origin. We alsoproposea pipelined
systemarchitecture basedon this algorithm. The number of
coarse-grainedpipelinestageswasverifiedby extensivesimu-
lation.

Section2 presentstheproposedray/Bézierpatchintersection
algorithm. Section3 describesour testimplementationfor the
algorithm. Section4 describestheresultingarchitecture. Sec-
tion 5 concludesthepaper.

Figure1: A Ray/PatchIntersection

2 The Ray/Bézier Patch Intersection
Algorithm

In this Section,we will develop themathematicsof thepatch
intersection algorithm.

2.1 Background and Overview

Ourstudyhasbeenfocusedonabicubic,nonrational,paramet-
ric Bézierpatch, whichwefor simplicity will referto hereafter
asa “patch”.

A ray, defined by an origin
�

anda direction � , intersects
a patchas shown in Figure1. There area maximum of 18
possibleintersection pointswhenaraypiercesapatch[7], but
from araytracingstandpoint,weareonly interestedin finding
theintersectionclosestto

�
. Wethereforearbitrarily limit our

interesthereto successively findingandthenrefining(atmost)���
intersectionpointsthatarenearestto

�
andthenselecting

theclosestof theseastheanswer.

Oneof themajordifficultiesof theray/patchintersectionprob-
lemis thatexactsolutionsto theproblemrequirefinding roots
of very high-degreepolynomials,which cannot in general be
doneanalyticallyandwhosenumerical solutionis error-prone.
Hence,we mustlook for approximatesolutions.

Figure2 showshow ameshof 16control pointsdefineapatch.
Theconvex hull property statesthat thepatchmustlie inside
its convex hull: the smallest(intuitively, “shrink-wrapped”)
polyhedron containingall thecontrol points[11]. It is there-
foreanecessarycondition for arayto intersectapatchthatthe
ray mustintersectthepatch’s convex hull. It is not, however,
a sufficient condition: a ray that passedthrough the convex
hull may still miss the patch,but if we subdivide the patch
into smallerpatches andthenconsiderthe intersectionof the
raywith thesesmallerpatches,missingthepatchbecomesless
likely asthe union of the convex hulls of the subpatchesap-
proachestheoriginal patch.Whenarayhits theconvex hull of

Figure2: TheControlMeshof aBézierPatch

a sufficiently small patch,thecenterof thepatchcanbecon-
sideredasa goodapproximationto theray/patchintersection.

To find a convex hull intersection, then, we first consider the
projection-basedapproach illustrated in Figure 3. Imagine
that a ray is contained in the intersectionof two perpendicu-
lar planes � and 	 , andthat these,thepatch,andits convex
hull areall projectedonto a third planeperpendicular to the
ray direction. We usethe � and 	 intersections to definea
coordinatesystemwhoseorigin is theprojectionof theray.

In theprojected2D coordinatesystem,if the16projectedcon-
trol pointsare locatedon the samesideof eitheroneof the
two axes,theraymusthavemissedtheconvex hull of thetest-
ing patch(Figures3b and3c). Otherwisetheray mayhit the
convex hull (Figure 3d).

Basedon theabove discussion,we outlinetheray/patch inter-
sectionalgorithm wewill use:

1. Divide an input patchinto 4
�
�

subpatches. (If
���

is 4,
thiscouldbedonewith two four-waysubdivisionlevels.)

2. Find all subpatchesthat arepossiblyintersectedby the
ray, basedon theconvex hull property.

3. If nosubpatchespasstheconvex hull test,exit with anull
intersectionresult.

4. From all possibly-intersectingsubpatches, find the (at
most)

� �
subpatchesthatareclosestto theorigin of the

ray.

5. If thesubpatchesaresufficiently small,exit with thecen-
terof theclosestpatchto theorigin astheintersection.

6. Subdivide the
���

subpatches to obtain4
���

smallersub-
patches.

7. Repeatsteps2 through 7.

Figure4: PlaneGeneration

2.2 Notation and Preliminaries

A ray
 is representedin the form
�� ��� ��� . For our
purposes,we will assumethat � is normalized. A planein
Euclidean3-spaceis defined(asusual)by theequation��� �������������! �#" (1)

Within a nonzero scalingfactor, thenormal to sucha planeis
thevector $ � ����%'& . A nonrationalparametric Bézierpatchof
degreem is definedby(*),+.-0/21 � 34 �6587 94: 5;78< � : � : 9),+=1>� � 3)?/@1 (2)

where
)?+A->/@1CB $ " -EDF% arethe parameters, < � : arethe patch’s

control points, and the blending functions are the Bernstein
polynomials:� : 9)?+;1 �HG#I JLK + :)>D�MN+=1 9PO : (3)

In matrix form, (2) becomes(Q)?+A->/@1 �SR
T < T &VUXW (4)

where < is the control point matrix, T is the Bézier basis
matrix, and T & is thetransposeof T .

The bicubic patchis a specialcaseof (4) with YZ� I �\[
where T]�_^``a

MbD [M [D[M�c [d"M [["d"D " "d"
egffh

and

< � ^``a < 7i7 < 7kj < 7ml < 7mn< jo7 < j0j < j>l < j>n< l07 < lmj < lil < lin< n07 < nmj < nil < nin
egffh W

2.3 PlaneGeneration

Given a ray
 , we needto find two mutually perpendicular
planes � and 	 that containthe ray. If p!q and pQr arethe

a) b)

c) d)

Figure3: TestingConvex Hull Points.(a)This is thebasicgeometry. (b) Theraymissesthepatchvertically. (c) Theraymisses
thepatchhorizontally. (d) Theraymayhit theconvex hull of thepatch.(In this case,it does.)

normalsof thetwo planes,respectively, then p�q , p*r , and �
areall mutually perpendicular, asillustratedin Figure4.

Of course,an infinite number of vectorsareperpendicular to� . A simple and robust algorithm to choosetwo mutually
perpendicularonesis:

1. let s be
�
,
�
, or

�
suchthat t�uP�Svxwzy)0{ t}| {k-~{ tx� {k-~{ tx� { 1

2. let � betheunit vectorin the s direction (i.e., � � ��� � u)
3. p q �#�����
4. pQr���p*q����

This could easily be implemented in hardware, especially
sincethe first cross-multiplication is simply a rearrangement
of theelementsof � .

2.4 Patch Subdivision

The patchsubdivision algorithmdescribedhereis basedon
thede Casteljaualgorithm [5]. Controlpoints of all the sub-
patchesaregeneratedby matrixmultiplicationswhichareeas-
ily andparallelizably performedin hardware. We decompose
thealgorithm into two steps.

In the first step,we subdivide the range of the parameter
+

,
deriving left ("�� + � jl) andright (

jl � + � D
) subpatch

control verticesandrespectively. Theleft subpatch
(��

is de-
finedby (�)?+A->/@1 � (�� + � -0/�� W (5)

Using(4), wecanrewrite this asR�T < � T & U (6)� � q~�� q~�� q l DX� T < T &VU
� R D� ^``a D "�"d"" � "d""d"d��""d"�" �

egffh T < T &'UNW
Sincethismustbetruefor all R and

U
, we infer that

< � �ST O j D� ^``a
D "d"�"" � "�""�"�� ""�"d" �

egffh T < ��� � < (7)

where � � � D� ^``a � "d"�"����"�"� � � "D [d[D
egffh W

Theright� subpatchQR is defined by:(���)?+A->/@1 � (G +}�SD� ->/ K W (8)

Againusing(4), we find that

< � ��T O j D� ^``a
D "�"d"[� "d"[�����"D � � �

egffh T < �#� � < (9)

where � � � D� ^``a D [d[D" � � �
"�"����"�"d" �

e ffh W
In thesecondstep,we apply thesamemethod in thev direc-
tion,creating thetopandbottom patchcontrolvertices<Q� and<b� . It is easyto show thatthesearerelatedto acontrol vertex
matrix <� via <¡� � <b � � and <b¢ � <¡ � � , where

� � � D� ^``a � � � D"d�d� ["�" � ["�"d" D
egffh �L£g� �¥¤ & (10)

and � � � D� ^``a
D "�"�"[� "�"[d��� "D � � �

egffh � £ � � ¤ & W (11)

Combining the two steps,we derive thecontrol vertex arrays
of all four subpatchesas¦ <b� � <b� �<b� � <b� ��§ � £�� � � � ¤ < ¦ � �� � § - (12)

which is easilydonein parallel.

2.5 Hull Classification

In Section2.1 we showedhow to determinewhethera given
ray hits theconvex hull of a givenpatchby looking at theal-
locationof theprojectedpatchcontrol points in theray-based
projected2D coordinateframe.While conceptuallyuseful,we
canbemoreefficientat implementationby makingfour obser-
vations.

First, we do not needto do the projections. We needonly
determine whethera given control point lies above or below
the � or 	 plane. This is a simple evaluation of the plane

equationusingthecontrol point. Recallthatin a3D space,the
distanceof a point < at (

�
,
�
,
�
) to aplaneasgivenin (1) is¨ � �P� �!�¡���������! © � l ��� l ��� l W

(13)

Thisdistanceis eithernegativeor positivedependingonwhich
sideof theplanethepoint < is located. Thenormaldefinesthe
positivedirection. Thedistanceis zeroif < is ontheplane.

Second, we donot needtheactualdistance,only needits sign
to determine whetherthe point is above or below the plane.
(We considerthe infrequently occurring casewherethe con-
trol point is containedwithin theplaneto be“above” for hull
classificationpurposes.)

Sincewe areonly interestedin thesign of
¨
, which is solely

determinedby thenumeratorof theright-handsideof (13),we
candefinethesigndistanceas¨2ª � ��� �������������� �- (14)

or, in matrix form,¨ ª � £ � � � ¤ ¦ < D § W (15)

Our hull classificationalgorithm saysthat, for either � or 	 ,
if thesignsof thesixteensigndistancesareeitherall positive
or all negative, the ray missesthe patch. If this is untruefor
bothplanes,the ray mayhit theconvex hull of thepatchand
henceit mayalsointersectthepatchitself.

A third observation is thatwe do not necessarilyneedto test
all 16points.Findingtwo pointsonoppositesidesof theplane
wouldimply possibleintersection, but asthis requiressequen-
tial evaluation, wecannot takeadvantage of thisobservation.

Fourth, thesigncalculations for bothplanescanalsobedone
simultaneously. Theexplicit computationsfor calculating the
16signdistanceswith respectto theplanes� and 	 are« ªq � £ � q � q � q txq ¤ (16)

^``a ¬­7i7 | ¬.7Fj | WzW6W ¬.nin |¬­7i7 � ¬­7Fj � WzW6W ¬An0n �¬.707 � ¬­7Fj � WzW6W ¬An0n �D D WzW6W D
egffh W

andsimilarly for
« ªr . If all componentsof either

« ªq or
« ªr have

thesamesign, the ray cannot intersectthepatch. Otherwise,
thepatchneedsto be further divided into smallersubpatches
for a more accurateapproximation.

2.6 Patch Center

As statedin Section2.1, it is necessaryto find the centerof
a given patchfor two reasons. First, an intersectionis ap-

prox® imated
¯

by the centerof a sufficiently small patch. Sec-
ond, in finding the approximatedintersectionpoints, our al-
gorithm mustsort out four subpatches (from all possibly-hit
subpatches)closestto the origin of the ray. We assumehere
that“closeness”meansthedistancebetweentheorigin of the
rayandthecenterof a given patch.

Oneway to definethecenterof thepatchwouldbeto take the
arithmeticmeanof the control points. This would be simple
to compute, but we have no guaranteethat this point actually
lies on thepatch,a desirablefeaturefor thefinal intersection
approximation.

Instead,weobservefrom (4) thatfor agiven patch
(Q)?+A->/@1

, an
unambiguous “parametric center” ° canbedefined:°²± (G D� - D� K ��R
T < T &VU (17)

where R\� U
& � £ j� j� jl D ¤ W
Basedontheabove,wecanderive

°²� Dc � £ D [d[D ¤ < ^``a D[[D
e ffh W (18)

2.7 Patch Distance

We definepatchdistanceto bethedistancebetweentheorigin
of the ray andthe centerof a givenpatch. Given two points< j �) � j³->��j´-0�³jF1

and < l �) � lµ->�µlµ-0�~l¶1
in 3-space,thedis-

tancebetweenthemis normallydefinedby an · l (Euclidean)
metric:¨ �²¸) � l M � j 1 l ��),� l MN� j 1 l ��)'� l MN� j 1 l W (19)

However, to simplify the computation, we redefinethe dis-
tanceasan · j (Manhattan) metric:¨ � { � lPM � j³{¶�¹{ �µl�MX�2j³{¶�¹{ �ºl�M��³j³{ W (20)

The distancecomputation from the ray origin must also in-
cludea sign. Positive signsindicatepositive ray parameter(t)
values. If the cosineof the anglebetweenD andthe vector
from O to C (givenby »z¼ O=½¿¾VÀ ÁÂ ¼ O=½ ÂÃÂ Ä�Â) is positive, theraypoints to-
wards(i.e., mayhit) thepatch,otherwiseit pointsaway from
(i.e.,definitelymisses)thepatch.

Again, sincewe areonly interestedin thesign of the cosine,
all weneedto calculateis

) ° M��C1ÆÅ � , sowecansortpatches

usingthesignedray/patch distance¨³Ç ��È ¨
if
) ° M���1AÅ �LÉ�"MbD

if
) ° M���1AÅ �LÊ�" W

(21)

Using-1 asaflagallowsusto removethatparticular candidate
from furtherprocessing.

2.8 The Culler

In our intersectionalgorithm, eachof four patchesis divided
into four subpatches,a total of 16 subpatches. Eachsubpatch
is thenevaluatedto seeif its convex hull intersectswith theray
(seeSection2.1). Fromall qualifying subpatches,the

� �
(at

most)with theshortestray/patch distancewill beselectedfor
further approximation. The sortingtask is accomplished us-
ing Quicksort,a standard sortingalgorithm withrun time effi-
ciency onaninputarrayof sizen. Thiscombinationof sorting
andselectionconstitutesthe“Culler” module.

2.9 Summary: An Algorithm for Finding the
Ray/ Patch Intersection

We now presentan implementationof the ray/patchintersec-
tion algorithmdescribedin Section2.1. As mentionedabove,
we have taken

� �
to be4. We alsouseintermediatebuffersto

holdpatches.

1. Subdivide the input patchinto four subpatches(Section
2.4) andput theminto buffer1, which canstoreat most
four subpatches.Generateplanes� and 	 from theray
parameters(Section2.3).

2. If thedesirednumber of iterationsis reached, go to Step
5. Otherwise,subdivide eachpatchin buffer1 into four
subpatches(Section2.4)andstorethemin buffer2,which
canholdat most16subpatches.

3. Evaluateeachpatchin buffer2by hull classification(Sec-
tion 2.5). Calculatethe centersof the patches(Section
2.6) andtheir distancesto the origin of the ray (Section
2.7).

4. Sortthepatchesin buffer2 to find thefour patchesclosest
to (but not “behind”, i.e. t 0) therayorigin (Section2.8)
andput theminto buffer1.Thengobackto Step2.

5. Output thecenterof theclosestof thefour subpatches.

Assumingthat thereis anintersectionpoint, aftern iterations
theresultingsubpatchwill beapproximately1/2nof theorig-
inal (linear) patchdimensions. As long asthe input patchis

Function Designation Description
PlaneGenerator M0 generates thetwo planes� and 	 from a given ray
PatchSubdivider M1 dividesaninputpatchinto four subpatches
HullClassifier M2 classifythehull
PatchCenter M2 compute thecenterof apatch
PatchDistance M2 compute thedistancefrom thepatchcenterto therayorigin
Culler Culler selectthefour subpatches nearestto therayorigin from sixteencandidates

Table1: ModularDecomposition.Thedesignationsreferto Figure6.

Figure5: MeanRunningTimesof FunctionalBuilding Blocks
(in msec.)

reasonably small, the four final subpatcheswill converge to a
tiny area,thecenterof theclosestof whichwill beconsidered
theintersectionpoint.

3 TestImplementation

All the functional blocks required by the proposedray/patch
intersectionalgorithm are listed in Table 1. After coding
themasC functions,we obtained the execution timesshown
in Figure 5. Thesewere measuredon a PC Workstation
with a 350MHz Intel PentiumII-MMX processorusing the
Windows�­Ë NT 4.0operating systemwith networking activ-
itiesdisabledandtheVisualC++compilerversion6.0with the
MaximizeSpeedoptionon.

Thesedata reveal the load distribution among the different
computing tasksand serve as guidelines for balancingthe
pipelinestagesanddetermining the hardware/softwareparti-
tion.

In orderto verify ouralgorithm, wedevelopedauserinterface
in whichtheusercanspecifyarbitraryraysandpatches. Using
thestandard“teapot” patchesasthebenchmark,we alsocom-
paredtheresultsobtainedfrom ouralgorithm with thosefrom
Nishita’s algorithm [9] (basedon the Bézier clipping tech-
nique). We found thattheintersectionpoints generatedby the
two algorithmsarewithin theaccuracy specifiedfor theBézier
clippingapproach.

4 SystemAr chitecture

The overall systemarchitecturefor physical implementation
of our algorithm is shown in Figure6. Note that the block
M2 containsthreemodules listed in Table1: HullClassifier,
PatchCenter, andPatchDistance.

The proposedarchitecture contains eleven pipelinedstages.
Stage0 executesStep1 of thealgorithm; Stages1 to 10 exe-
cutetheloopbody of thealgorithm. They areidenticalexcept
that stage10 outputs centersof the last four subpatches that
will betakenastheintersectionpoints.Within eachstage,the
inherentparallelismof thealgorithm is exploited by thefunc-
tional building blocks. Thenumberof stageswasdetermined
basedonobservationsof thealgorithmsconvergenceratedur-
ing thesoftwareemulationprocess.Throughput of theoverall
systemwill bedeterminedby thelatency of a singlestage.

Note that this architecture illustratesthe datapathstreamof
our algorithm with coarse-grainedpipelinestages.It is open
to refinedintra-stagepipelining andhardware/softwareparti-
tioning, basedon specificperformance requirementsandim-
plementationconstraints determinedby differentapplications.

5 Conclusionand Subsequent Work

In this study, we have presented analgorithmfor solving the
ray/Bézierpatchintersectionproblem. Although its computa-
tional complexity is on the sameorder of someotherknown
algorithms,theproposedalgorithm hastheadvantageof being
suitablefor parallelandpipelinedexecution. Thecorrespond-
ing systemsarchitecture for physicalrealization hasalsobeen
developedwith all thefunctionalbuilding blocks specified.

Work basedon theseresultshasalreadybeencompleted in
[10]. For performance estimation,the pipeline was refined,
load-balancedandmappedinto multipledigital signalproces-
sors(DSPs)andcustom-designedhardware.Theresultsshow
that by reducing the grain scaleof the pipelineandsupport-
ing the inherentparallelismof thecomputing taskswithin its
stages,asystemthroughput of over

D "=Ì ray/patchintersections

persecondÍ is achievable.

Weanticipatethatwith thecurrent level of rapidtechnological
advances,practical systemsbasedon this studycouldbebuilt
in thenearfuture.

Acknowledgments

Thisworkwaspartiallysupportedby theU. S.Air Forceunder
AFOSRcontractnumber F49620-93-C-0063.

WeareindebtedtoAlain Fournier for hisassistancein deriving
thepatchsubdivision formulae,to WayneCochranfor his ini-
tial implementationof theNishitaalgorithm, andto Shuyang
Li for herhelpin adapting theNishitaalgorithm andin imple-
mentingthesoftwareversionof theproposedalgorithm.

References

[1] J. Arvo andDavid Kirk, “A Survey of Ray TracingAc-
celerationTechniques”,Chapter6 in An Introduction to
RayTracing, (A.S.GlassnerEd.),AcademicPress,1989.

[2] Didier Badouel andKadi Bouatouch,“Distributing Data
andControlfor RayTracingin Parallel”, IEEEComputer
Graphics andApplications,14(4), pp. 69-77,July1994.

[3] SwenCampagna, Philipp Slusallek,andHans-PeterSei-
del, “Ray Tracingof SplineSurfaces:BézierClipping,
Chebyshev Boxing, and Bounding Volume Hierarchy -
A Critical ComparisonWith New Results”,The Visual
Computer, Vol. 13,pp. 265-282, 1997.

[4] JamesD. Foley, Andries van Dam, Steven Feiner, and
JohnHughes,ComputerGraphics: PrinciplesandPrac-
tice,2ndEdition, AddisonWesley, 1997.

[5] Alain Fournier andJohnBuchanan,“Chebyshev Polyno-
mials for Boxing andIntersectionsof ParametricCurves
andSurfaces”,ComputerGraphicsForum,13(3)(EURO-
GRAPHICS94Proceedings),pp. 129-142.

[6] Donald L. Hung, “A Study on Accelerating the
Ray/Triangular Facet Intersection Computation in
Xpatch”,Technical Reportto theU.S.Air Force,August,
1998.

[7] JamesT. Kajiya, “Ray Tracing Parametric Patches”,
Computer Graphics,16(3), pp. 245-254,July1982.

[8] Hyun-JoonKim andChong-Min Kyung, “A New Parallel
Ray-Tracing SystemBasedon Object Decomposition”,
TheVisualComputer, Vol. 12,pp. 244-253,1996.

[9] Tomoyuki Nishita,Thomas W. Sederberg, andMasanori
Kakimoto, “Ray Tracing Trimmed Rational Surface
Patches”,Computer Graphics, 24(4), pp. 337-345, Au-
gust1990.

[10] RenweiWang,A Studyon AcceleratingtheRay/B́ezier-
Patch Intersection Calculation in Xpatch, MS Thesis,
School of EECS,WashingtonStateUniversity, 2000.

[11] AlanWattandMarkWatt,AdvancedAnimationandRen-
dering Techniques: Theory andPractice,AddisonWes-
ley, 1998.

Figure6: SystemArchitecture

