The Normal of a Fractal Surface

Wayne O. Cochran* Robert R. Lewis'

John C. Hart?

November 9, 2000

Keywords: fractal, fractal function, fractal terrain, iterated func-

tion system, recurrent modeling

*School of Electrical Engineering and Computer Science, Washington
State University; 14204 NE Salmon Creek Avenue; Vancouver, WA 98686-

9600.

tSchool of Electrical Engineering and Computer Science, Washington

State University; 2701 University Drive; Richland, WA 99352.
{Department of Computer Science, University of Illinois, 1304 W. Spring-

field Ave.; Urbana, IL 61801.

Abstract

We have discovered a class of fractal functions that
are differentiable. Fractal interpolation functions have
been used for over a decade to generate rough functions
passing through a set of given points. The integral of a
fractal interpolation function remains a fractal interpola-
tion function, and this new fractal interpolation function
is differentiable. Tensor products of pairs of these fractal
functions form fractal surfaces with a well defined tangent
plane. We use this surface normal to shade fractal sur-
faces, and demonstrate its use with renderings of fractal

mirrors.

1 Introduction

There are many definitions of the term fractal. Most involve
some property of detail at all levels of magnification. This prop-
erty tends to imply that any fractal function is not differentiable.
Given areal function f(z) of a single real variable z, its derivative

is commonly defined as

h—0

The graph of a fractal function f has detail at all levels of magni-
fication. As h approaches zero (from either direction), the limit

in (1) may not converge.

Fractals have found numerous applications in computer graphics
as a representation for rough surfaces, particularly for model-
ing terrain [FFC82, Man82, Kaj83, Bou85, Mil86, MKM8&9]. In
the absence of an analytic derivative, the shading of these fractal
surfaces is typically approximated using the surface normals from
the terminal level of surface subdivision. However, the shading
from the normals at a given level of surface subdivision is not nec-

3

essarily representative of reflectance of the rough surface found

at the limit of subdivision.

Fractal surfaces can also be shaded using a weighted average of
surface normals taken over a variety of subdivision levels [HD91].
However, this normal was designed to visually indicate the scalar
self-symmetry of the fractal surface, and was not meant to ap-

proximate the shading of the limit surface.

Instead, we consider an alternative implicit definition of the deriva-

tive as the solution f’ of

flz)=yo+ /Ox f'(t)dt. (2)

In this ordinary differential equation form, one can describe a

function f by its derivative f’ and an initial value f(0) = y.

In this manner, we model a fractal surface by modeling its deriva-
tive. We use the representation of fractal interpolation functions
[Bar86|, developed over a decade ago, along with an associated
calculus that shows that the fractal interpolation function rep-
resentation is closed under integration [BH89]. In this manner,

4

we have a well-defined representation for a fractal surface and an
equally well-defined representation for its derivative, and thus its

surface normal.

Fractal terrain surfaces based on fractional Brownian motion,
which is a self-affine process, result in functions that appears
steeper at finer levels of magnification. While this simulates nat-
ural structures well, in the mathematical limit we find that the
slope tends to infinity. Alain Fournier [Fou] observed that such
surfaces are blackbodies, absorbing all incoming light in a myriad
of self-shadowed interreflections. The fractal terrain models de-
rived in this paper do not have such slopes than tend to infinity
across finer scales, and are perhaps a more appropriate model
for determining bidirectional reflectance distributions for rough

surface shading models.

As for increasing slope variance at finer scales to simulate phys-
ical structural characteristics, the terrain model in this paper is

offered as a primitive. These primitives represent a uniformly

distributed slope variance across all scales. This characteristic
is appropriate for typical terrain databases that use many prim-
itives to interpolate dense arrays of data points, as opposed to
fractal terrain models that use few primitives to synthesize typi-

cal features that could possibly be found in reality.

2 Fractal Interpolation Functions

Let zp < z; < --- < zy be a partitioning of the interval X =

(2o, zn]. Let Lj : X — X be the affine map
Li(z) = ajz +b; (3)

where 0 < a; < 1 and b; are such that

Li(zo) = xj 1, (4)
Lj(ﬂ?N) = Iy, j=1,2,...,N, (5)
yielding
aj = (z; —xj-1)/(2n — @), (6)
bJ = Tj-1 — Q;%o, .7 17 7N (7)

Let o, Y1, ---,yn € R (the points (z;,y;) are often referred to as

knots or control points). Let F; : X x R = R be

Fj(z,y) = a9 + g;(z) (8)

where 7 = 1,2,...,N, -1 < «a; < 1, and g¢; is a Dth degree

polynomial
D
qj(z) = ZjSxZa g €R (9)
i=0
where
F}'(an yO) = yjfla (10)

We refer to a; as the horizontal contraction factor or horizontal

Lipschitz constant since

‘Lj(xl) — Lj(xQ)‘ < aj|331 - $2|a (12)

for z;,x, € X. The parameter «; is termed here as the vertical

contraction factor or vertical Lipschitz constant since

\Fj(z, 1) — Fj(z,42)| < |ojl|lyr — y2l, (13)

forz € X, y1,y2 € R

Each map w; = (Lj(z), Fj(z,y)) can be defined to operate on a

set of points A

wi(A) = |J wjlz,y), (14)
(z,y)eA

and the simultaneous operation of all maps on a set A is defined

by the Hutchinson operator
N
W(A4) = Jw;(4). (15)
i=1
The attractor A is the fixed point
W(A) = A, (16)

so that every point on .4 maps to some (usually) other point on
A. A is the graph of the associated fractal interpolation function

(FIF) which is the unique function f : X — R satisfying

f(Lj(z)) = Fj(z, f(z)), j=1,2,...,N,z € X. (17)

Two fractal interpolation functions are illustrated in Figure 1.
The graph of the function f on the left interpolates the points
(0,0), (1,1), and (2,0) using the functions

8

Figure 1: Example two-map fractal functions interpolating three

control points: f (left) and g (right).

Liw) = 32 (18)
Ly(x) = %xﬂ (19)
Fi(z,y) = %y-i—%:c (20)
Fy(z,y) = %y-l—l—%ac (21)

The graph of the function g on the right interpolates the points

(0,0), (1,1), (2,0) using the same horizontal contractions, and the

vertical contractions

Gilz.y) = gyt g 22)
Go(z,y) = —;—gy +1-— %:v (23)
2.1 Evaluating FIF’s
Algorithm 1 FIF chaos game.
Input: {w;},, seed (2o, Yo)
(z,y) < (2o, Y0)
for i = 1 to iterations do
j « random index in {1,..., N}

(.’L‘, y) A ’U)j(.’E, y)
plot(z,y)

end for

We can use the chaos game to generate points on the attractor as
shown in Algorithm 1. To actually evaluate f(z) we must use an
iterative approach by composing the sequence of transformations
which (approximately) map some initial point (xg, yo) to (z, f(x))
as described in Algorithm 2. We can form the composite w, =

10

w;ow; where L.(z) = L;oL;(z) and F.(c,y) = F;(L;(x), F;(x,
f] (z) j) j i\Z, Y

yielding
a. = aa;, (24)
bc = aibj + bi, (25)
Qe = 004, (26)
¢(z) = oqi(z) + gi(a;z + b)). (27)

By using the binomial expansion of (az +)™ we note that
qlaz +b) = i Im i (Tl:) a™ FpEgmh (28)
m=0 k=0
where ¢(z) = Y _, gma™. From this we can compute p(z) =
q(ax +b) by summing coefficients for z™ 7 :
Doy -+ Pm <0
for m =0 ton do
for k =0tom do
Pk < Pk + @ ()™ Fb"
end for

end for

11

Figure 2: The horizontal contractions converge on the evaluation
point. The contractions shown correspond to the map L, o L; o
Ly o Ly oLyo Ly, The composition of corresponding vertical

contractions yields the result of the fractal function evaluation

Each of the terms a’ and &’ can be recomputed and (’Jn) can be re-
trieved via lookup into a table referencing Pascal’s triangle. The
rapid convergence of Algorithm 2 is apparent from Equation 24
and Figure 2. For example, if each of the horizontal contrac-
tion factors were a; = 1/2, then [—logs€]| iterations would be
required (e controls the accuracy of the computation and repre-
sents an upper bound on the horizontal contractivity factor a for

the composite transformation w formed during iteration).

12

Algorithm 2 Evaluation of FIF f(z).
Input: z € [z, zn], {w; = (L;(2), F(z,) }j5

Output: y = f(x)

w <+ (L(x) =z, F(z,y) =vy) {identity transformation}
repeat

j+<1

while j < N and ¢ > Lo Lij(zy) do

JJ+1

end while

W w o wj
until ¢ < € {composite L(z) = ax + b is sufficiently contrac-
tive}
k+ |N/2|

y + F (g, yx) {transform median control point}

13

3 Integrating FIF’s

In [BEHS9] the construction of a FIF f(z) that is the definite

integral of another FIF f(z) on the interval [z, z| is given. In

other words, the maps {(L;(z), Fj(z,y))}, for
f@ =io+ [st (29)

can be computed from the maps {(L;(z), Fj(x,y))} L, for f(z).
Given the initial value g, we can determine the last interpolation

value as

T an [N ga(t)dt
gy = o + Tot e T (30)
1-— anl an Oy,

Note that the denominator in Equation 30 can never be zero since

> a, =1 and |a,| < 1. The remaining knot y-values are

J x
gj = g() + Z an, [an(@N — go) + / qn(t)dt] . (31)
n=1 o

Both sets of maps for f(z) and f(z) share each L, while F} is

now determined by

A

Fi(z,y) = ajo y + ¢;(x), (32)

14

where

4j(z) = gj-1 — aja;do + a; / q;(t)dt. (33)

Zo

Equations 30 and 31 can be derived by summing the integrals
over each partition and using the substitution provided by Equa-
tion 17. By using the definition of f(z) we can determine an
equation for f(I;(z)) and then Equations 32 and 33 follow from
Equation 17. The proof for this construction was first given

in [BEH89] (for a more detailed proof see [Coc98]).

Note that the vertical contractivity factor for ﬁ} in Equation 32 is
a;o; which is smaller in magnitude than the vertical contractivity
factor a; for Fj. As this term approaches zero the function 13}
can be approximated by ¢;(z). Intuitively, this demonstrates the

“smoothing” of the fractal function as we integrate.

The FIF model is general enough to include many “smooth” func-
tions (e.g., we can represent polynomials). Since we have a closed
form solution ffo f(z)dz for any FIF f(z) implies that we can cre-

ate a wide variety of differentiable FIF’s according to the funda-

15

Figure 3: The integrals of the fractal interpolation functions f

(left) and g (right) from Figure 1. Both curves are C* and fractal.

mental theorem of calculus. More precisely, f'(z) = f(z) if and

only if f is the function associated with {(L;(z), F}(z,y)) P

where
Ey(x,y) = Gy + 4;(2), (34)
a;/a; = oy, (35)
¢;(z) = a;q;(z), j=1,...,N. (36)

The integral of f(z) is a fractal function interpolating (0,0), (1,1),
(2,2), using the same horizontal contractions as f, with the new

vertical contractions

16

1 1

Fi(z,y) = vt §x2 (37)
1 1 1

The integral of g interpolates (0,0), (1,3), (2,1) with the new

vertical contractions

17 1
Gi(z,y) = 10Y + 5552 (39)
17 37 1 1
Gy(z,y) = ——y+-——+ -z — -x° (40)

The graphs of these integral curves are shown in Figure 3.

3.1 The FIF Tensor Product

The non-differentiable property of most fractal curves and sur-
faces created with affine transformations can be problematic in
computer graphics especially when it comes to computing sur-

face normals for lighting calculations. Typically, surface normals

17

are approximated by averaging normals of bounding volume hi-
erarchies (as in [HD91]) or low-pass filtering the surface at some
prescribed resolution and inferring a normal from the low resolu-
tion result. Surfaces created from differentiable FIF’s (e.g., via
tensor products) are both fractal and have a well defined surface

normal.

We can create a FIF height field h(z,y) that has well defined
surface normals by choosing differentiable FIF’s f(z) and g(x)

and defining the tensor product

h(z,y) = f(®)g9(y), o<z <2N, Yo <Y< Yum- (41)

Using the partial derivatives

he(z,y) = f'(x)9(y) (42)

hy(z,y) = f(z)g'(y) (43)

the tangent plane at h(z,y) is spanned by the vectors (1,0, hy(x,y))

and (0,1, hy(x,y)) and the normal direction N(z, y) can be com-

18

puted via the cross product of these two vectors:

N(x,y) = (_hm(x’y)7_hy(xﬂy):1) (44)

4 Ray Intersection

In order to ray trace the FIF tensor product height field h(z,y)
we construct an algorithm to find the intersection of a ray with
the surface (z,y, h(z,y)) for (z,y) € [xo,2n]| X [yo,yr]|. The ray
r(t) is defined by the ray origin o and the ray direction vector d
as

r(t) =o+td,0 <t < oo (46)

Following previous fractal terrain [Kaj83, Bou85] and IF'S [HD91]
ray tracing algorithms, we use a depth first search of a hierarchy
of procedural bounding volumes that converge to the surface, as

illustrated in Figure 4. For heightfields we can impose an ordering

19

Figure 4: A 2-D illustration of the procedurally-generated bound-

ing volumes used to determine ray-FIF intersection.

on the bounding boxes we inspect in such a way that the first

intersection we find is indeed the closest intersection.

In order to construct our bounding volumes, we need the bounds
for the functions f(z) and g¢(y) on the intervals [zg,zy] and
[Yo, Yar] respectively. It is difficult in general to find the optimal
bounds of an attractor [Ric96]. One suboptimal but reasonable
solution is to use the chaos game (see Algorithm 1) to find ap-

proximate bounds and inflate these bounds by some small factor.

Given the corners (g, finin) and (zx, fmae) of the bounding rect-

20

angle containing the graph of f(z), we need to be able to con-
struct a smaller bounding rectangle that bounds the attractor af-
ter it has passed through some contraction w = (L(z), F(z,y)).
Clearly the bounds on two of the sides will be Z; = L(xo)
and Tpe = L(zy). To find the other two sides we compute the

extrema of the polynomials

F(z, fmin) = 0fmin +q(z), (47)
F(LE, fma;c) = afmaw + Q(x) (48)

on the interval = € [z, zy].

We construct a bounding volume (3-D oriented box) for the
portion of the surface (z,y, f(x)g(y)) corresponding to the two
bounding rectangles with corners (Zmin, fmin), (Tmazs frmaz) and
(Ymin, 9min), (Ymazs Gmaz)- The corners of this bounding box are
(Tminy Ymin, Pmin) a0d (Zimaz, Ymazs Pmaz) Where Ay, and by, are

the minimum and maximum of the set

S = {fmmgmma fmingmaza fmazgmina fmazgmaac}- (49)

We can find the points of intersection (r(tp),r(¢1),to < t1) be-

21

tween the ray and the bounding box by finding the ray intersec-
tions with each pair of parallel planes defining the box. Given
the six intersection ¢ values for each plane the endpoints of the

interval

[tO’ tl] = [twmzni t$maac] N [tymzn) tymam] N [thmzn’ thmam] (50)

yield the appropriate values. If this interval is empty or ¢; < 0
then the ray does not intersect the box. Since these planes are
parallel to the coordinate axes the intersection computation is
simple. For example, the value of ¢ at the intersection of the ray

r(t) with the plane x = x is

(51)

In the special case where the ray is parallel to one of the planes
then its corresponding intersection interval becomes either (—oo, +00)
or empty depending on whether or not the ray origin is between

the planes in question.

The method for finding a ray intersection with the surface first
attempts to intersect the ray with the surface’s global bounding

22

volume as described above. If the ray misses this box then we
conclude that the ray does not intersect the surface. Otherwise
we recursively generate child bounding boxes and carry on until
either we have concluded that there is no intersection or we have
intersected a very small box. As we noted earlier, we can choose
the order in which we generate these child bounding boxes to en-
sure that the first intersection we encounter is indeed the closest
intersection to the ray origin. This ordering is determined by
projecting the ray onto the zy-plane and classifying its direction
into one of four cases: ((+z,+vy), (+z,—y), (—z,+y), (—z,—y)).
Figure 5 illustrates each case and shows possible orderings for
six child bounding boxes. Note that no child box can occlude

another child box with a lower ordering value.

An outline of the recursive search through the bounding boxes
is given in Algorithm 3. Given the ray r(¢), the maps and
bounding rectangles for f and g, the child ordering list for the
current ray direction, the routine generates composite maps w?

and w’/ (which are each initialized to the identity transformation

23

27 (xy) (%)

Figure 5: Four cases of ordering child bounding boxes based on
the direction of the ray projected on to the zy-plane.

(L(z) = z, F(z,y) = y))) that produce a bounding box that is

small enough to approximate the intersection point.

5 Results

Figure 6 illustrates the rendering of fractal surfaces with fractal
surfaces with well-defined surface normals. Although the surface
on the left appears smooth, it is fractal and its roughness is subtle

and detectable in its shading. The curve of the derivative f can

24

Algorithm 3 (rayIntersection) Find ray intersection with
height field h(x,y) = f(x)g(y) defined by FIF’s f and g.

Input: r(t), {w]f N {wi L, recty, recty, childOrdering, w9, w!

Output: ¢ : ray intersection parameter, ¢ < 0 implies no intersection

{Form 2D bounding rectangles that contain the attractors for f and g

once they have passed through their respective composite transformations w/ and w9.}
rect!; < childBoundingRectangle(w/ (rect))

recty < childBoundingRectangle(w?(rect,))

{Build the resulting bounding volume for the corresponding portion of the surface h(z,y).}

boz < boundingVolume(rect’, rect;)

if ray r(t) intersects boz then
Set ray entry and exit parameters ¢y < t;.
if composite transformations are sufficiently contractive then
t < (to + t1)/2 {Approximate intersection found, use average t-values.}
else

for (i,7) € childOrdering do
f

i

w! — wlow,
wd < w9 o w]g

t + rayIntersection(... ,w/, w?) {recurse with new maps}

if t > 0 then

Intersection found, unwind recursion.
end if
end for
end if

else

t < —1 {no intersection}

end if

25

Figure 6: FIF tensor product surfaces: f x f (left) and g x g

(right), rendered as reflective mirrors.

be visualized in the reflection of straight lines.

We have adapted a conventional raytracer originally developed
for [Lew90] to include FIF objects along with the usual polygons
and implicit surfaces. To specify the relation between incident
light and reflected radiance L,, the user can assign to a FIF object
one of several illumination models: diffuse, Phong, Torrance-
Sparrow, and others®. FIF objects may also be transparent and

have mirror reflection.

!See [Lew94] for additional details.

26

Figure 7: A FIF object rendered by a conventional raytracer.
Left: one sample per pixel. Right: 16 jittered samples per pixel.
The FIF object filling the corner includes a mirror reflection com-

ponent.

As with any raytracer, it is important to consider the sampling
process. Each pixel value may be considered the integral of the
reflected radiance L, times a weighting function w(u,v) over a

sample area (which may or may not extend outside the pixel):

Lpixelz// L. (u,v) w(u,v) du dv (52)

where w(u,v) is defined so that [[w(u,v)dudv = 1. A
ray tracer may take a single ray per pixel so that w(u,v) =
d(u — ue) 6(v — v.), where (uc,v.) is the center of the pixel. Al-

ternatively, it may cast N x N rays per pixel, so that

N—-1N-1

w(u,v) = ZZé(u—ui)é(v—vj) (53)

where the (u;,v;) values may be on a uniform or randomly-
“jittered” grid. It is also possible to incorporate a Gaussian

dropoff into w(u, v).

Figure 7 shows two images created with this raytracer. The left-
hand image uses a single ray per pixel and the right-hand image
uses 4 x 4 jittered rays per pixel. The differences between the
two demonstrate the increased susceptibility of FIF objects to

aliasing effects.

6 Conclusion

While not all fractal functions are differentiable, they are all in-
tegratable, and their integral is often itself a fractal function that
is therefore differentiable. We have used this property to define
a class of fractal surfaces with a well-defined surface normal by

creating a tensor product of integrals of fractal functions.

28

6.1 Future Work

The tensor product is in itself not an acceptable terrain model.
All of the examples we have constructed have obvious grain lines
parallel to the coordinate axes. These grain lines can be elim-
inated by creating a non-separable fractal function height field,
similar to the non-separable fractal function curves in [CHF98].
A non-separable fractal height field is made from smaller self-
replicas, but cannot be separated into a tensor product of two

individual self-similar fractal functions.

Removing the tensor-product artifacts will also produce a more
realistic rough surface model. The surface normals of a sample
area of a given fractal surface can be collected into a normal

distribution function and/or a BRDF. A fractal BRDF can be

used to shade arbitrary geometries as rough surfaces.

Aliasing is a problem, especially for fractal surfaces. While the
normals of our fractal surfaces are well defined and continuous,

they vary widely over small regions and are in fact fractal. These

29

normals could be sampled analytically by integrating over a re-
gion that projects to a pixel, as this integration is similar to the
integration performed to generate the geometry of the surface.
This integration method could be used to construct a normal
distribution for regions on the surface, and could also yield a

BRDF model for rough surfaces.

Fractal functions with the same horizontal and vertical scale fac-
tors are closed under addition and scalar multiplication. We sus-
pect this property could be used to define a fractal function of the
height field normal over a given domain. This normal in fractal
function form could then be integrated to produce an area aver-
age of the surface normals, and perhaps even an area sample of

the shading.

Height fields are an explicit geometric representation. We are
pursuing methods for using fractal functions for implicit and
parametric geometric representations as well. If these methods

use fractal functions that are integrals of other fractal functions,

30

then the geometry they represent will also be shaded as directly

as the height fields in this paper.

6.2 Acknowledgments

This research was funded in part by the National Science Foun-

dation under grant #CCR-9529809 and a gift from Intel.

References

[Bar86] Michael F. Barnsley. Fractal functions and interpola-

tion. Constructive Approrimation, 2:303-329, 1986.

[BEH89] Michael F. Barnsley, John H. Elton, and D. P. Hardin.
Recurrent iterated function systems. Constructive Ap-

proximation, 5:3—-31, 1989.

[BH89] Michael F. Barnsley and A. N. Harrington. The calcu-
lus of fractal interpolation functions. Journal of Ap-

poximation Theory, 57:14-34, 1989.

31

[Bou85]

[CHF98)]

[Coc98|

[FFC82]

[Fou]

[HDO1]

Christian Bouville. Bounding ellipsoids for ray-fractal

intersection. Computer Graphics, 19(3):45-51, 1985.

Wayne O. Cochran, John C. Hart, and Patrick J.
Flynn. On approximating rough curves with fractal

functions. In Proc. Graphics Interface, pages 65-72,

June 1998.

Wayne O. Cochran. A Recurrent Modeling Toolset.
PhD thesis, EECS Dept, Washington State University,

December 1998.

Alain Fournier, Donald Fussel, and Loren Carpenter.
Computer rendering of stochastic models. Communi-

cations of the ACM, 25(6):371-384, June 1982.

Alain Fournier. personal communication.

John C. Hart and Thomas A. DeFanti. Efficient an-
tialiased rendering of 3-D linear fractals. Computer

Graphics, 25(3):91-100, 1991.

32

[Kaj83]

[Lew90]

[Lew94]

[Man82]

[Mil86]

James T. Kajiya. New techniques for ray tracing
procedurally defined objects. ACM Transactions on
Graphics, 2(3):161-181, 1983. Also appeared in Com-

puter Graphics 17, 3 (1983), 91-102.

Robert R. Lewis. Three-dimensional texturing using
lattices. FEurographics 90, pages 439-48, September

1990.

Robert R. Lewis. Making shaders more physically
plausible. Computer Graphics Forum, 13(2):109 — 120,

June 1994.

Benoit B. Mandelbrot. The Fractal Geometry of Na-

ture. W.H. Freeman, San Francisco, 1982.

Gavin S. P. Miller. The definition and rendering of
terrain maps. Computer Graphics, 20(4):39-48, Aug.

1986.

33

[MKM89] F. Kenton Musgrave, Craig E. Kolb, and Robert S.

[Ric96]

Mace. The synthesis and rendering of eroded fractal

terrains. Computer Graphics, 23(3):41-50, July 1989.

Jonathan Rice. Spatial bounding of self-affine iterated
function system attractor sets. In Proc. Graphics In-

terface ‘96, pages 107-115, May 1996.

34

List of Figures

1

Example two-map fractal functions interpolating

three control points: f (left) and g (right).

The horizontal contractions converge on the eval-
uation point. The contractions shown correspond
to the map Loo Lo Lyo LioLyo Ly. The compo-
sition of corresponding vertical contractions yields

the result of the fractal function evaluation

The integrals of the fractal interpolation functions
f (left) and g (right) from Figure 1. Both curves

are C!' and fractal.

A 2-D illustration of the procedurally-generated
bounding volumes used to determine ray-FIF in-

tersection.

35

12

Four cases of ordering child bounding boxes based

on the direction of the ray projected on to the zy-

FIF tensor product surfaces: f x f (left) and g x g

(right), rendered as reflective mirrors.

A FIF object rendered by a conventional raytracer.
Left: one sample per pixel. Right: 16 jittered sam-
ples per pixel. The FIF object filling the corner

includes a mirror reflection component.

36

