BSPLND, A B-Spline N-Dimensional Package for Scattered
Data Interpolation

Michael P. Weis
Tracker Business Systems
1835 Terminal Drive, Suite 220
Richland, WA 99352
1-509-946-5414

mike@vidian.net

ABSTRACT

The problem of scatered data interpolation is the fitting of a smocth
surface(or, more generally, a manifold) through a set of non-uniformly
distributed data points that extends to dl positions in a domain.
Common sources of scatered data include experiments, physicd
measurements, and computational values. Scattered data interpolation
asdsts in interpreting such data through the cdculation o values at
arbitrary positions in the domain. Despite much attention in the
literature, scatered data interpoation remains a difficult and
computationally expensive problem to solve. BSPLND is a software
padkage that solves this problem. It uses the scatered data
interpolation technique presented in [1] (heredter, LWS). This
technique is fast and produces a C%-continuots interpolation function
for any set of scatered data using a hierarchicd set of cubic B-splines.
BSPLND extends the technique to work with data having an arbitrary
number of dimensions for both its domain and range.

Categories and Subject Descriptors

1.3.4 [Graphics Utilities], 1.3.5 [Computational Geometry and
Object Modeling], G.1.2 [Approximation], E.2 [Data Storage
Representations].

General Terms
Algorithms, Performance Design.

Keywords
Scattered data interpolation, multil evel B-splines, data goproximation.

1. INTRODUCTION

The scatered data interpolation technique presented by LWS is
discussed in the context of bivariate data where the independent datais
in 2D and the dependent data is a scdar. LWS develop the multil evel
B-spline gproximation method and the simpler algorithm on which it
depends, the B-spline gproximation method The B-spline
approximation method cefines an approximation function for a set of
scatered datain terms of uniform cubic B-spline basis functions on its
own merit, and the multil evel technique improves uponit.

Robert R. Lewis
Washington State University, School of EECS
2710 University Drive
Richland, WA 99352
1-509-372-7178

bobl@tricity.wsu.edu

In this paper, we will set up the problemin the context of bivariate data
in sedion 2 and then refer you to [1] for the details of the
mathematicad development. In sedion 3 we extend the math to data
having an arbitrary number of dimensions in bah its domain and
range. The design and implementation d BSPLND are presented in
sedions 4 and 5 respedively.

2. Problem Definition for Bivariate Data

Let Q ={(x,y) |0<x<m,0<y<n} be aredangular domain in the
xy-plane, and P = {(X., Y., Z)} be aset of scatered pdntsin 3D space
LWS define an approximation function f of this data & a uniform
bicubic B-spline function in terms of a control lattice @ overlaid on
domain Q. The ontrol latticeis a (M+3) x (n+3) set of control points
that spans the integer grid in Q. Restricting the @ntrol points to
integer values smplifies the math, without lossof generdlity. Figure 1,
ill ustrates the relationship of ® to Q.

y
A
(0]
n+1
n @on @Gnn
' Q
1
0 Moo Gmo) X
-1
10 1 m m+l

Figure 1. Control lattice configuration (from LWS).

Let ¢ be the value of the ij-th cortrol point in lattice @, located &t (i, j)
fori=-1,0,..., m+1landj=-10, .., n+1 The gproximation
functionf is defined in terms of these @ntrol points by

f(xy)= ; Z B, (9)B, (t)q)(i+k)(j+|) (@

wherei =X~ 1, j =00 1, s=x—XJandt =y -y Byand B, are
uniform cubic B-spline functions defined as

B,(t) = (1-t)*/6,
B,(t) = (3> -6t* +4)/6,
B,(t) = (-3t* +3t? + 3t +1)/6,
B,(t) =t°/6,

where0 <t < 1. Thesefunctions srve a blending functions, weighing
the mntribution d ead control point to f(x, y) based onits distanceto
(%,). Notethat as B-spline aurves, they sum to avalue of one & eadh
value of t. The problem of determining f then, is reduced to solving for
the control pointsin & that best approximate the scattered datain P.

We refer the reader to [1] for the 2D mathematicd development of
cdculating control lattice @, which defines an approximation function
for fitting the scatered data. As mentioned in the introduction, LWS
present two methods for its cdculation, the B-spline gproximation
method, or BA agorithm, and its more cgable descendant, the
multil evel B-spline gproximation method, or MBA algorithm. In the
next sedion, we extend their mathematica development to datain any
number of dimensions.

3. Extendingthe Techniqueto Data of Arbitrary
Dimensionality

In handling scattered data having an arbitrary number of dimensionsin
both its domain and range, we denate the number of dimensionsin the
domain and range by D and R, respedively. Becaise eab o the R
data values in the range of a data point are independent of ead ather,
we can determine one @proximation function in terms of the
independent data for ead dmension d the range. Solving this
problem then, can be reduced to solving R approximation functions
with damain D and range R =1 and grouping the R functions in some
manner. The following is a derivation d the BA algorithm for a
domain of dimension D and the range ascdar.

3.1 TheBA Algorithm

The development is gmilar to the 2D case. Let the domain be defined
asQ = {(XO, X1y ooy XD-l) IO < Xp < My, 0< X1 < My,..., 0< Xp-1 < I’Tb_l}
and the scatered data be defined asP = {(Xoc, X100 -++» Xp-1.00 Z)}. The
control lattice ® overlaid onQ isa (my+3) x (Mmy+3) x Mk (Mp.1+3) set
of control points that spans the integer grid in Q. Let @m,, be the

iol1Mp.1-th control paint in lattice ® locaed at (ig, iy, .., ip.1) fOrig=-
1, 0, . rTb+ 1, i1: 'l, 0, e, My + 1, . iD-1: '1, O, e, Mp g t+ 1.
The gproximation function is defined in terms of these @ntrol points
by

3 3 3
f (%, %, X)) = l;k;mz B, (to) By (t,) MIB, (Lo)@y whyiorkym, ok, o)

Kp1=0

3 3 3 D-1
= ZZMZ Q—! B« (td)%’(wnxink,)muin,,+kn,,)
b Wolh-

where ig = 40— land ty = xg — Xgdfor d = 0, 1, ..., D-1 (one per
dimension d of the domain). Each o the Bkd are uniform cubic B-

spline functions defined ealier, where eab of the D subscripts ky =0,
1, 2, 3, and the D arguments ty range from zero to ore: 0<ty< 1. Thus

in (2) we extend the tensor product form of (1) to generate the function
f for a D-dimension damain.

Similar to the 2D case, the problem of determining f is to solve for the
control pointsin @ that best approximate the scatered datain P. To
start, we @nsider one data point in P, (Xoc Xico ---s Xp-1,00 Z) and its
relationship to the 4° control paints in its neighbarhood Assuming
that 1< Xg6 X106, ---» Xp-1c < 2 8 LWS doin the 2D case, then cortrol
points O, for ko, Ky, ..., Ko.1 =0, 1, 2, 3 determine the value of f

at (Xo.cr X,cr ---» Xp-1,0). FOr fto evaluateto z, at (Xo¢, Xuc ---+ Xp-1,0)s the
cortrol points ¢, , ,, Must satisfy
0" D-1

3 3 3
Z = ZZDHDZ Wkok1mmo—1(n<ok1mb—1 (39
ko=0K; =
D-1

kp1=0
where Wiy, = I‘! |3kd (td) andty =Xy — 1ford=0, 1, ..., D-1.
d=

We onvert (3a) to matrix notation, by defining column vedors W =
[WkoklmngD_1 | Ko, Ki, oo Kot =0,1,2,3]"and ® = [(pkoklmmD-l | ko, ki, ...,
kp1=0,1,2 3"

z,=W'® . (3

c

Note that Equation (3) is a hyperplane in 4°-space in urknowns
Oy, Spedfying the same minimization constraint as LWS for

the 2D case, that the sum of the sguares of the 4P variables
G m (®" ®) be minimized, amourts to locaing the point on this

hyperplane that is closest to the origin. This constraint is chosen to
minimize the deviation o f from zeo over the domain Q. The
parametric form of the line through the origin perpendicular to the
hyperplaneis given by

DP=uW, @4
where W represents anormal vedor to the hyperplane anduisascdar.
Substituting (4) into (3b) yields

z, =uW W
Solving for u and substituting into (4) gives the solution:

Wz,
wTw
Summarizing, the 4° equations given by (5) are the solution to control
points O, in the vicinity of data point (Xoc Xic .-

D= ©)

, XD.1,0)-

Therefore, by dired substitution d (5) into (3b) we seethat function f
evaluates to z, at data point (Xoc, Xicr ---» Xp-1,c)- EQuetion (5) is the
general solution to the 2D case presented in LWS, where there ae
4? = 16 control pointsin the vicinity of any given data point.

Next we @nsider the dfeds of al tm data points in P on control
lattice ®. For ead data point, (5) can be used to evaluate the 4°
control points in its neighbarhood When the neighbarhoods of two
data points overlap, multiple assgnments to a cntrol point occur via
(5). To resolve multiple assgnments to a mntrol point, LWS consider
al the data pointsin its neighbarhood cdling this st of data pointsits
proximity data set. The proximity data set of the single control point

@ym,, SIVeN YR L = {0 s X016 Z) D P lio— 2 X0 <o

+2, ..., ip1— 2 Xp1c<ip.at+2}. Foread datapoint in Roilm[[b_l , (5)

givesthe single rtrol point ¢ . m,.. adifferent value @:

W.Z
% ww

D-1

where w, = Wik, = r! |3kd (ty): and ky = ig — (Bkyc0-1) and
d=

(6)

tg= X4 — XqcOford =0, 1, ..., D-1. To resolve multiple essgnments

to control point Om,,» W follow LWS in their 2D approach by

minimizing the aror &(¢ . .) = Z(Wep m,, w.@)?, where the
term (Wc‘puoilmmg-l —W.@) is the difference between the red (wc(ploilmb_l)
and expeded (We@) contributions of ¢ . m,_ to function f at (Xo ¢, X1.c,

..., Xp.1,0)- Taking the derivative of approximation error e with resped
to @m,., and equating the result to zero to find a minimum gives:

2
> P o

q)_) =
Toly Mh_y chf

Developing the pseudocode for the BA agorithm to handle an arbitrary
number dimensions in the domain is a straightforward extension o the
algorithm by LWS using the derivation given here. Recdl that this
derivation asauumes that R= 1, and as such the solution is applied orce
for eath dmension d the range of dimension R. This asped of the
algorithm shall be presented in Sedion4 in the discusson o
BSPLND. Here is the BA agorithm extended to a D-dimensional
domain.

BA Algorithm (R= 1)
Input: scatered dataP = {(Xoc, Xi.cr -+ XD-1,00 Z0)}

Output: cortrol lattice® ={ ¢ . . }
for al ig, iy,... , ip.1 dO
let 5i0i1D]lIb,1 =0 and wioilmm:—l =0

for ead pdnt (Xoc, X1, -+ Xo-1.00 Z) iIN P do
for eadh dmensiond =0to D-1do
letiqg= g1
let td = Xd,c - |__X‘d'c|]

end
3 3 3 2 T
CompUte zko=0 ZKFO Dmikb—ﬁowkohﬂmt)—l (W W)

for ko, Ky, ..., kp.1 =0, 1, 2,3do
compute Wik, @0 element of W

compute @, , .~ anelement of ®, using (5)

add w?

g Pt 1O O itk)i+ i o)

2
add WkOkltlIkD_l to w(io+ko)(i1+k1)mmi|:—1+k|:—1)
end

end

for all ig, iy,... ,ip.1 dO

if @, #Othen

compute (ploilm%_1 =
elselet @Cm,, = 0

0 using (7)

-y | Py,

end

The BA agorithm has three major loops. In the first loop the
agorithm initializes the numerator and denominator of (7) for eat
control point in ®. The seand loop visits ead data point, first
cdculating its effect on the 4° control paints in its neighbarhoodwith
(5), and second acamulating the numerator and denominator of (7).
The third and final loop opimizes the multiple assgnments to eah
control point by applying (7), if its particular denominator is norzero;
otherwiseit is assgned avalue of zero.

3.2 The MBA Algorithm

A tradeoff exists between the shape smocthnessand the gproximation
acarracy of B-spline function f generated by the BA agorithm. LWS
develop the multilevel B-spline gproximation method, or MBA
agorithm, to generate afunction that is bath smocth in shape and that
closely approximates the datain P.

This MBA agorithm generates a hierarchy of control lattices, eat via
the BA algorithm, that represent a sequence of functions, the sum of
which is the desired approximation function. The first function in the
sequence is derived from a marse lattice The acaracy of this initial
function on dtain P isimproved upon ly subsequent functions in the
sequence derived from finer lattices. Improving further upon this
multilevel algorithm, LWS formulate a technique cdled B-spline
refinement to reducethis aim of B-spline functions into ore equivalent
B-spline function. We refer the reader to [1] for the detailed
development of the multilevel approach in 2D. However, we will
briefly summarize the dgorithm through the reproduwction o a
graphicd ill ustration and the dgorithm pseudocode from [1].

The MBA agorithm comes in two forms, eah generating the same
approximation function f. The first form, the basic MBA, generates a
hierarchy of coarse to fine control lattices ®g, Py, ..., Py, overlaid on
domain Q and representing a sequence of functions f,, the sum of
which is the desired result f. The marsest lattice @, is chaosen to
approximate the data in P via the BA agorithm. The difference
between the datain P and the initial function fy evaluated at the datain
P (spedficdly, z - fo(Xoe, X1co ---» Xp-1,c)) SEIVeES as inpu to the next
applicaion d the BA agorithm to generate the next control lattice @,
chosen by LWS to be twice the size (or density). This process
continues for the cdculation o subsequent lattices, eat twicethe size
as the previous in the sequence, as appli caions of the BA agorithm for
the lattices beyond @, serve to remove the residua error. Figure 2a
ill ustrates the basic MBA for the 2D case.

control lattice progressive
ierarch; control lattice:

control lattice
ierarchy

B-spline function

@, - Wo (Do)
l ‘7reﬁne4
Widy

@, + = ¥,

W
o, +— = v,

—refine

¥,

o, —+ = v,

evaluate

(a) without B-spline

t (b) with B-spline refinement
refinement

ap approximation

function f function f

Figure 2. Approximation function evaluation in the MBA
algorithm (from LWS).

Here is the dgorithm for the basic MBA from LWS, modified for a
domain of dimensionD. Notethat A% = z.

Basic MBA Algorithm (R=1)
Input: scatered dataP = { (Xo.c, X.¢r -+ XD-1,00 Z0)}
Output: control lattice hierarchy ®q, ®y, ..., ®;,
letk=0
whilek<hdo
let Pe={(Xoc X0 -+ X010 AZ0)
compute ®, from P, by the BA algorithm
compute A'z, = Az - fi(Xo,0 X100 - +» Xp-1.0) & ead datapt.
letk=k+1
end

Notice that evaluating f requires (h+1) evauations of a B-spline
function by (1), rather than a single evaluation afforded by the BA
algorithm (except when h=0). To eliminate this extra overheal in
computation, which can be significant if f is evaluated for a large
number of pointsin Q, LWS formulate atechnique they cdl B-spline
refinement, illustrated in Figure 2b. This technique will reduce the
(h+1) B-spline functionsinto ore eyuivalent B-spline function. Thisis
the second form of the MBA agorithm.

The B-spline refinement technique is progressve in that it is applied at
eat level in the ontrol lattice hierarchy. Figure 2b ill ustrates the
process described here. Let F(®) denote the B-spline function
generated by control lattice ® and let |®| dencte the lattice size of @.
Starting with the initial control lattice in the hierarchy @y, a new
control lattice 'y can be derived through B-spline refinement such
that F(®'g) = F(Po) = fo and |®'g| = |P4]. In ather words, @'y can be
derived which defines an equivalent B-spline function to @, but which
has the size of the next lattice in the hierarchy ®,. Then the sum of
functions fy + f; can be satisfied by a single lattice W, which results
from the sum of ead correspondng control point in @'y and @;.
Referring to Figure 2b, we ntinue the progresson at the next level
with lattice W4, applying B-spline refinement to derive lattice W', such
that F(Y¥';) = F(W,) and |¥'4| = |®,|. The progresson ends at the finest
latticein the hierarchy.

The process is generalized by the following pseudocode by LWS,
modified for a domain of dimension D. In the dgorithm, P — F(®P)
represents the updated data { (Xoc, X1, ---» Xo-10 A'2)}, where P =
{(0e X100 ++s Xo1.00 A2} aNd i = F(D).

MBA Algorithm (R=1)
Input: scattered data P = { (Xo,c, X1.¢r -1 Xp-1,00 Z0)}
Output: control lattice W
Let & bethe marsest lattice
LetW' =0
while ® does not exceel the finest control latticedo
compute @ from P by the BA algorithm
compute P = P - F(P)
compute W = W' + @
let & bethe next finer control latticein the hierarchy
refine W into W' whereby F(W') = F(W) and |V'| = |D|
end

The B-gpline refinement step, the last one in the loop, can be
performed by a variety of methods as noted by LWS. For the 2D case,
LWS chocse to refine a(m+3) x (n+3) control lattice @ into a
(2m+3) x (2n + 3) lattice @' whose ontrol point spadng is half as
large asthat of ®. Then the refined latticeis the same size & the next
lattice in the hierarchy and the sum of the two lattices W' and @ in the
algorithm is a simple matter of summing their correspondng control
points. Letting ¢ and ¢j; be the ij-th control point in ® and @',
respedively, then the position d control point ¢ 5 in ®' corresponds
to control point ¢ in ®. LWS define the following relationships
between the @ntrol pointsin ' andthosein ®:

, 1
@ioj = almﬂ P ¥ Burjor F Burjor 6@ + @ TP+ D) +360;]

, 1
Di2js1 =176[(R_1‘J TP TP +(ﬂ+1,1+1+6((ﬂj +(ﬂ,1+1)]

1
(B0 + B+ Purja T Purjn T 6@ +05)]

@iz :TG

, 1
Doiva2ja :Z[(ﬂ,l TPt P +(ﬂ+1,1+1]

Note there ae four equations for the 2D case. In general, there ae 2P
unique euations, ead relating a wrtrol point in ® to upto 3° control
points in @' in its vicinity. Notice that the fadors that blend the
control pointsin @' sum to ore (for example, the four fadors of ¥in
the last of the four equations given here).

4. BSPLND Design

The BSPLND padage implements the MBA agorithm, for data
having an arbitrary number of dimensions in its domain and range.
BSPLND provides its user with two options for cdculating an
approximation function viathe MBA algorithm given a set of scatered
data points — bsplnd_fit and bspind_fitToTol. Each routine returns a
data structure containing the ontrol lattice that defines the
approximation function. The control lattice in this form can then be
passed to BSPLND’s bspind_eval routine to evaluate the function at
any independent data value, thereby implementing the D-dimensional
form of the gproximation functionin (2). Because the data structure
is dlocaed dynamicdly a run time, the padkage provides
bspind_delete to freethis memory.

BSPLND provides the user with flexibility in its two separate
implementations of the MBA algorithm. The routine bspind_fit

accepts as inpu the number of levels of B-spline refinement (defined
by h - seethe basic MBA), so that the user predetermines the size of
the ontrol lattice hierarchy. When given h=0 for no refinement,
bspind_fit implements the BA agorithm. The sewmnd routine,
bsplnd_fitToTol accepts a tolerance, or measure of acairragy, that the
approximation function must achieve in its evaluation at the scatered
data points. Therefore, this routine determines the number of levels of
B-spli ne refinement required to achieve thistolerance

The primary challenge in implementing the MBA algorithm and the
suppating routines such as bspind_eval and bsplnd_delete, is the
programming and data structure design required to hande data with an
arbitrary number of dimensions in its domain and range. Becaise
BSPLND routines must accet the dimensiondities D and R of the
domain and range & inpu in order to properly interpret the scetered
data they receéve, the dimensions of an array to store the D-
dimensiona control lattice cana be spedfied a compile time, but
rather must be determined at run time. The solution to this problem,
along with other feaures of the design, shal be discussd in this
sedion.

First we shal present the data structure design for storing the
D-dimensional control lattice and follow that discusson with the
procedural design for accesing the structure. This will be
acomplished through a set of procedures, or algorithms, that led to the
implementation o the BSPLND routines mentioned above. We will
start with the dgorithm for bspind_eval, which demonstrates real
accessto the data structure. This algorithm asaumes that the control
lattice has aready been cdculated. It is the simplest of the dgorithm
set and will help us introduce the more complex multidimensional BA
algorithm, which will now be presented in the cmntext of the cntrol
lattice data structure. This algorithm demonstrates write accssto the
data structure, for it cdculates the control lattice We will follow this
with the multidimensional agorithm for B-spline refinement, which,
given a ontrol lattice generates a finer control lattice defining the
same gproximation function. Then, we can use both the BA
algorithm and the B-spline refinement algorithm to buld the MBA
algorithm, as illustrated in Figure2b. This algorithm led to the
implementation o BSPLND routine bspind_fit and, with dlight
modificaion, the routine bsplnd_fitToTol. We name a BSPLND
algorithm the same &s its implemented courterpart when the dgorithm
led dredly to the implementation. Whether referring to the dgorithm,
which led to the implementation, or the implementation itself, shoud
be obvious from the @mntext.

4.1 Storageand Accessto the D-Dimensional

Control Lattice

In the following discusdon abou the cntrol |attice data structure we
will frequently reference the BA agorithm rather than the MBA
algorithm, because the BA algorithm adually cdculates the cntrol
lattice The MBA agorithm uses the BA agorithm to cdculate the (h
+ 1) latticesin the control | attice hierarchy.

The principa inpu to the BA algorithm is the set of scatered data
points P and the principa output is a D-dimensional control |attice W
overlaid onthe domain Q of thedata. In order to properly interpret the
scdtered data the BA algorithm must also receve the number of
dimensions in the domain and range of the data, D and R, and the
number of data points, p. One method for storing the scattered datain
memory is with two separate data stores, a p x D two-dimensional
array for the independent data, and a p x R two-dimensional array for
the dependent data, where eab o the p rows in these @rrespondng

arrays represent the @scissa and adinate of one data paint,
respedively. Let x = {(XO,C! Xy oo XD-l,c)} and z = {(D Z1cr e
Zr10)} denote these two data sets, where x and z are the domain and
range of P, respedively. While the scatered data can conveniently be
stored in atwo-dimensional array structure & detailed here, storage for
the output data, the cntrol lattice requires a D-dimensiona array,
becaise the lattice is overlaid on the domain Q of the data, as
illustrated in Figure 1. Herein lies the difficulty in storing the lattice
Becaise D is edfied as inpu, the aray dimensions canna be
spedfied a compile time, but must be determined when the
implementation o the BA algorithm runs.

A review of how a two-dimensional array may be accesd as a one-
dimensiona array will provide some insight into solving the problem
we facein storing and accessng the data for the control lattice A
cdler of the BA agorithm can pass satered data x and z (along with
D, R, and p) as two-dimensional arrays. A conceptua view of x in
memory as a two-dimensional array, where subscript ¢ varies over the
p datapointsfrom0to p - 1, isill ustrated in Figure 3a.

X(),p-l Xl,p-l b XD-l,p-l

‘ Xo,u X1,u = Xp.10 Xoa X1 Xp11°* Xapl X1,p-1 b XD-l‘p-l

(b) one-dimensional array (two indices)

Xo1 X1 - Xoaa

Xoo X0 Xoap ‘X'o X Xer_l‘

(a) two-dimensional array (c) one-dimensional array (one index)

Figure 3. Theindependent data x in atwo-dimensional array and
corresponding one-dimensional array.

In this figure, we use aCartesian indexing scheme that is consistent
with the indexing used for control points (seeFigure 1), where the first
of the two indices is the fastest varying index, or subscript, indicating
contiguous memory locaions. We shall continue with this convention
when introducing the multidimensional control lattice shortly. Thisis
contrary to the C-convention d indexing two-dimensiona arrays
where the second index varies the fastest (row-major order). Either of
these two conventions can be used in converting a two-dimensional
index into a one-dimensional index.

From the cdler's perspedive, pasing x as a two-dimensional array
makes the most sense, for this is how the data is logicdly organized.
However, becaise the two-dimensional array is gored in a contiguous
set of memory locations, the BA agorithm can accessthe data & a
one-dimensional array of px D elements, as ill ustrated in Figure 3b.
Figure 3bis derived from Figure 3a by traversing the datain Figure 3a
from left to right and bdtom to top. As long as parameter x is passd
to the BA agorithm as a pointer to the first data value xq, the
agorithm can index it as a one dimensional array, using the foll owing
relationship:
Xispj =%, (8)

where i and j represent the two-dimensional array indices. Figure 3c
ill ustrates the one-dimensional indexing of array x. The BA algorithm
access the scatered datain input x and z in this fashion. This gives
the cdler the freedom to passx (and 2) as a two-dimensional or a one-

dimensiona array, as long as it passs the dgorithm a pointer to the
first element in the aray (along with values for D, R, and p).

We can store the D-dimensional control lattice in a one-dimensional
array and acces®s it in asimilar manner. The aray is alocaed at run
time with a cgadty of (mg+3) x (My+3) x [k (mp.1+3) X R elements,
onefor ead control point in the lattice Recdl that when R> 1 we can
cdculate aseparate lattice for eahh dmension o the range under the
asumption that R=1 for that particular dimension. Taking this
discusson in steps, we aume R=1 for now. Afterwards we shall
elaborate on haw the storage and accessof the latticeis affeded when
R>1. When R=1, the one-dimensiona array consists of (my+3) x
(m+3) x Ik (mp.,+3) elements. To demonstrate, consider a three
dimensional domain (D = 3). Figure4 ill ustrates the threedimensional
view of the control lattice using the Cartesian indexing scheme.

Pom,-10 Prm, -10 v O -1m, -10

: : : Ouy-1m, -11 | v
L- e Oum,-110 .
s -m Bao ° : M, -1 Pmg-im-im, -1
1~ Mo
i m -

Pu,-111
- Qoom,-1 Prom, -1 s Qm,-10M, -1

Figure4. Three-dimensional control lattice.

Similar to the subscripting of independent data store x, we use z&o-
based indexing for the control points and have simplified subscripting
with a change of variable, so that

Md:rnd+3! (9)

ford=0, 1, ..., D-1. Mqisthe number of contiguous control pointsin
dimension d of the domain. Similar to the two-dimensional example
for independent data store x, the first dimension (d =0) is along the
horizontal from left to right and represented by the first subscript, the
seoond(d = 1) isalong the verticd from bottom to top and represented
by the second subscript, and the third dmension (d =2) is into the
page from front to badk and represented by the third subscript. The
figure introduces the cncept of the stride represented by variable S.
The stride will provide the means of indexing the one-dimensional
array in this example that is smilar to the two-dimensional casein (8).
If dl MgM;M, elements in the three dimensiona array were laid ou
end-to-end, then §; is the number of elements between two adjacent
elements in dmension d. Figure5 illustrates the one-dimensional
array storage of the three-dimensional control |attice and the stride S.

S, = MM,

™

‘%uu o Qv LDD o M, -110 *** @oM,-10 **+ PM -1M, -10 | Gboa |+ PM,-1Mm, -11
= QooM,-1 *** QM -1M, -1M, -1
(a) one-dimensional array (three indices)
S, = MM,
s, 1F
\@- s o] G, -1 [G| -
G MMM, -1

(b) one-dimensional array (one index)

Figure5. Storing thecontrol latticein a one-dimensional array.

Notice how the stride maps from the threedimensional view in
Figure 4 to the one-dimensional view of the datain Figure 5a. We can
spedfy the one-dimensional array index for the control lattice
illustrated in Figure5b, as a function o the threedimensiona array
indices and the stride Sas

Bsyrisitks, =Pk (10

where § =1, S = My, and S, = Mg M; from Figures4 and5. For
example for control point @y o1, the one-dimensional array index is

1xS + 0xS, + 1xS, =
1x1+ 0x M0+ 1x Mo Ml = MO Ml + 1.

Explaining this result, we natice from Figure 4 that starting at the
initial control point @0, and traversing them from left to right, bottom
to top, and front to badk in the order we would lay them out in ore
dimension, that control point @, ¢ is the (Mg My + 2)th control point in
the sequence With zeo-based indexing, the index to the
correspondng one-dimensional array is MgM; + 1, as cdculated.

We can extend this threedimensional example to the general case
where the domain is of D dimensions. Noticethat in this example that
the stride is increasing as the dimension d the data (d) increases, as
more dements must be skipped to read the aljaceit element in
dimension d. We agply the pattern that develops in the three
dimensiona caseto D dimensionsto define the stride reaursively as

S =S1 Mg, (1D

where§=1andd=1, 2, ..., D-1. Theone-dimensiond array index is
then afunction o the D-dimensional indices and the stride:

U —-—
goloScJ+|1SLm[|]DﬂSDf1 _(p|0v|1vmm|071 12
7 _ y 12
¢z:;;|u5d _(plo,ll,D]J]ID_l

wherely=0,1, ...,Myg— 1 andlg=ig+1ford=0,1, ..., D-1. Recdl
that iy was used in the (-1)-based indexing for the multi dimensional
control lattice introduced in Sedion3.1. Notice that (8) is the two-
dimensional applicéion d the general case.

We now elaborate on the cae where R>1. As we mentioned in
Sedion 3, when the range of the scatered data is a vedor (R> 1), we
solve R approximation functions, one for eaty dmension d the range,
and group them in some manner. We can acommodate the R control
lattices defining these R functions by increasing the @ntrol lattice
array from MgM;[MMp.; elements to MyM; [MMp.1xR elements. In
esence eat control point is an R-element vedor. Figure 6 ill ustrates
atwo-dimensional conceptual view of this dorage, where the first array
index is for the dimension d the range and the seoond is the one-
dimensional index cdculated with (12), so that the R values for eat
control paint “vedor” are aljacent in memory.

Qom,Mm, MM, -1 Prmm, 0IM, -1 **= PR-1M M, DM, -1

. .
B3 .
.

.1 (O] v Qran
(o o *r QPr1o

Figure 6. Two-dimensional view of complete control lattice.

In this case the two values of stride ae =1 and S;=R. Accessng
thisasaone-dimensiond array is graightforward from (8):

G.r=@,; 13

wherer =0,1, ..., R1landj=0,1, ..., MpM; MMp_; — L Thus, we
index the mntrol lattice a a one-dimensiona array with two steps: first
by (12), then by (13). Combining the two relationships yields,
/ —_
Y 5ok = Pronmo, 49

=0

4.2 BSPLND Algorithms

4.2.1 Evaluation of the Approximation Function with
bspind_eval

The bspind_eval algorithm evaluates an approximation function
defined by control lattice W at one position (X, X1, ..., Xp.1) in the
domain Q; in other words, it implements (2). This algorithm shall
demonstrate the procedural design for accessng the one-dimensional
array of the D-dimensional control lattice with (14). It assumes that
the ontrol lattice has been cdculated (for example, via the BA
algorithm).

First, we introduce the data structure of the objed that encgpsulates the
control lattice data store and several other data dements. The
additiona data or fields of this dructure include data required of the
user of BSPLND to cdculate the ontrol lattice (e.g., D and R) and
cdculated data (e.g., S) useful to severa of the BSPLND agorithms.
Rather than pass them as sparate parameters or require ther
cdculation in ead agorithm, they are padaged into this one structure
and the structure (or a pointer to it) is communicaed as a whole.
Table 1 liststhe datafields of this gructure.

Tablel. Datastructurefor storing control lattice.

Field Array Size Description

o M[O]M[1]... | Number of control paints in
M[D-1]R control lattice

S D The stride.

D Scdar No. of dimensionsin the domain.

R Scdar No. of dimensionsin the range.

M D No. of control points in ore

dimension d the domain.

xMin, D, Lower and upper boundry values

xMax D of the domain, one per dimension
of thedomain.

slope, D, Fields slope and intercept represent

intercept | D a transformation function from the
domain of the scattered data to the
domain of the control lattice

h Scdar No. of levels of B-spline
refinement used in cdculating this
control lattice

Datafields D, R, S, and M maintain their definitions. Fields xMin and
xMax are D-element arrays of red numbers that spedfy the lower and
upper bound & the domain Q in eaty dmension d. Fields slope and
intercept are D-element arrays of red numbers that define alinea
mapping function from domain Q of the scetered data to the domain
of the mntrol lattice We define the domain o the wntrol lattice &
follows. It is not reasonable that the BSPLND user be required to
spedfy the domain Q as defined in Sedion 3.1, such that the control
points gan the integer grid in Q. Therefore, we define the domain of
the mntrol lattice to be one defined similar to the one in Sedion 3.1
for Q %{(X’o, X1 oy X'D-l) | 0<Xg<My-3,0<x,<M;-3,...,
0<Xp1 < Mp;—3} and map damain Q to it, so that O (zero)
corresponds to xMin[d] in Q and Mq; —3 = M[d] —3 corresponcs to
xMax[d] in Q, for all d. We then can map any position (X, Xy, ..., Xp-1)
in the scatered data's domain Q to this domain using fields slope and
intercept, and till use the development in Sedion3.1. Field h of this
data structure is the number of levels of B-spline refinement used to
cdculate this lattice Finaly, data field @ is a M[O]M[1]...M[D-1]R-
element array of red numbers that are the cntrol paints of the cntrol
lattice initidly zero elementsin size

All array sizes but that of array ¢ can be preset with some reasonable
upper limit on D withou consuming too much memory, but becaise
the caadty of ¢ can become rather large in pradice ad can vary
widely, we dynamicdly all ocate its gorage prior to cdculating it in the
BA algorithm.

Before listing the bspind_eval agorithm, we introduce three
algorithms. Thefirst cdculatesthe stride S

cdc_stride(D, M, {1})
1 90 -1

2 ford-~ 1ltoD-1do
3 9d] ~ §d-1] (M[d-1]

4 end

The mapping function stored in fields slope and intercept is cdculated
in the bspind_new agorithm. The bspind_new agorithm initi ai zes the
control lattice objed @ (Table1). It accets D, R, M, xMin, and xMax
as input (ultimately from the BSPLND user) and control lattice objed
@ as output. It popuates @, including fields slope and intercept, for
the BA agorithm before the BA cdculates the cntrol latticein field @
We shall useit later.

bspind_rew(D, R, M, xMin, xMax, ®{1})

®D - D
PR R
®.h -0
ford - OtoD-1do
®.M[d] ~ M[d]
d.xMin[d] — xMin[d]
®.xMax[d] — xMax[d]
range — xMax[d] —xMin[d]
®.slope[d] ~ (M[d] — 3)/range
10 ®.intercept[d] ~ (M[d] — 3) kMin[d])/range
11 end
12 cdc_stride(D, M, @.9)
13 > Calculate the cgpadty for field pand all ocae its memory
14 size - M[D-1] O».9D -1 [R
15 Alloc(d.¢ size)

O~NO O WNPE

©

The BSPLND agorithms calc _stride and bsplnd new use a
pseudocode that more dosdly resembles an adua programming
language like C or Pascd than dothe dgorithms by LWS in previous
sedions. The BSPLND agorithms generally foll ow the pseudacoding
conventionsin [2]. Notethat an ouput parameter isindicaed by {1}
in the forma parameter list of an algorithm, and an inpu/output
parameter in indicaed by {11}. Absence of a symbd after the
parameter denotes an input parameter. Also, for arrays in greder than
one dimension, we use the C subscripting convention d row-major
order.

Before listing the bsplnd_eval agorithm we present one more
algorithm, cdled eval_basis functions, which evaluates the four
uniform cubic B-spline functions at a given value t. This algorithm is
cdled by bspind_eval.

eval_basis functions(t, B{ 1})

1 a-1-t

b~ aa

C 1t

dct

B[0] — ab/6

B[1] « di2-c+2/3

B[2] « -di2+c/2+1t/2+ 1/6
B[3] -~ d/6

O~NOO O WN

After exeaution d this agorithm, array B contains the four B-spline
function evaluated at t: By(t), By(t), By(t), and Bs(t). The four B-spline
functions are nat reaily reaognizable in eval_basis functions, because
the dgorithm cdculates them with the minimum number of operations
possble. We used the software gplication Mathematica [3] to
determine the quickest means of cdculating these four functions,
because this algorithm is cdled D times for ead scatered data point
input into the BA algorithm given later.

We now list the bspind_eval algorithm, which implements (2) by
evaluating the gproximation function stored in control lattice objed W
at independent data stored in D-element array X. It returnsthe result in
the R-element array Z.

bspind_eval(W, X, Z{1})
> Locate the independent data X relative to the control lattice
> with the “anchor” index i[d] for each dm. d of the domain
> and evaluate the four B-spline functions for each dm. d.
ford -« 0toW.D - 1do > Loop #1

Xmap — W.slope[d] OX[d] + W.intercept[d]

i[d « Xmap-1 >igin (2)

t[d] « Xmap—XmapO > tgin(2)

eval_basis functions(t[d], CubicBsplines[d])

oO~NO O WN P

9 end

10 > Evaluate control lattice for each dm. r of the range.

11 forr -« OtoW.R-1do > Loop #2

12 Z[r] <0

13 > Calculate the sum of the 4° termsiin (2)'s simmation.

14 for TermCnt — Oto(1<<(2[W¥.D))—1do > Loop#21
15 Index1D ~ O

16 BsplineProd 1
17 > For this term, generate unique combination of kg;
18 > cac. B-splinefunc. product; acauim; 1D index to W.¢.
19 ford - 0toW.D-1do > Loop #21.1
20 k[d] « (TermCnt >>(2d)) & 0x3 > kqin (2)

D-1
21 > Accumulate r! By, (t;) n@-

d=
22 BsplineProd — BsplineProd [CubicBsplinesd][k[d]]
23 > Accum. 1D index to W.¢gwith (12), assuming R=1.
24 Index1D — Index1D + W.9d] ((i[d] + 1) + k[d])
25 end
26 > Finish 1D index to W.¢ via(13), to account for dim. r.
27 Index1D « r + Index1D [W.R
28 > Add current term to the summation.
29 Z[r] < Z[r] + BsplineProd [¥.¢{Index1D]
30 end
31 end

The dgorithm for bspind_eval follows diredly from (2) and the
mathematicad development given here for accessng the D-dimensional
control lattice stored in a one-dimensional array. It may be helpful to
the realer to refer badk to equation (2) at this point, as many of the
termsin this equation are referenced in walking through bspind_eval.

The first loop d the dgorithm cdculates data to be used in the second
loop. First, it maps the independent data in X to the wntrol lattice
domain. Using this result, it cdculates the D-dimensional, (-1)-based
indices iy in array i, where eab iq is the first of the four control point
indices in dmension d that effed the value of the gproximation
function at X. Later, in Loop#2, these participate in generating the
one-dimensional array index to the mntrol latticein W.¢@for accessng
one @ntrol point for one term in (2). After caculating in array t the
arguments ty to the four B-spline functions, Loop#1 evaluates these
functions with a cdl to eval_basis functions. Upon completion o
Loop#1, the aray CubicBsplines contains 4D values as ill ustrated in
Figure7. We mnserve exeadution time by cdculating the 4D unique
evaluations of the B-spline functions in the first loop and storing them
in memory. If cdculated in Loop#2 on an as needed besis, (2)
requires D4° evaluations of these functions.

d=0 | Bo(t[0]) By (t[0]) B(t[0]) Bs(t[0])
d=1 | Bo(t[1]) Bu(t[1]) Bo(t[1]) B(t[1])
d=D-1 | Bo(f[D-1] | By(t[D-1]) | Be(t[D-1]) | Bs(t[D-1])
)

Figure7. The populated CubicBsplinesarray at the conclusion of
Loop #1 in bspind_eval.

The second loop acaimulates the 4° terms of the summetion in (2) for
ead dmension d the range independently, accessng the gpropriate
4P control paint elements in array W.@@ As noted ealier, there is a

separate set of M[O]M[1]...M[D-1] control points in W.¢ for eat
dimensionr of the range. When Loop#2 completesit has dored the R
separate evaluationsin ouput array Z. Nested Loop#2.1 cdculates the
summation for dimension r of the range; therefore, ead passthrough
this loop generates one term in the summation o (2). Key to the
algorithm, nested Loop#2.1.1 generates a uniqgue wmbination d the
summation variables ky in array k (one per dimension d, where kg =0,
1, 2, or 3) as afunction d the loop iteration variable TermCnt. The
summation variables ky index the B-spline functions in the B-spline

D-1
function product rl B (t,) of (2), and asdst in indexing the one-
d
d=

dimensiona control lattice aray W.¢ . At the mncluson o

D-1
Loop#2.1.1 then, we have cdculated |—! B, (ty) for one term in the
d=

summation, and indexed the one-dimensiona array W.@ with (12).
This indexing, which occurs in line 24, increments the aray element
i[d] by one to convert to zero-based indexing. Then in line 27, the
algorithm completes the indexing of the one-dimensional control
lattice taking into acourt the crred dimension d the range with
(13). Finaly, in line29, the dgorithm adds the airrent term to the
acaimulating sumin Z for the aurrent dimension o the range.

4.2.2 The BSPLND BA Algorithm: bsplnd_fitUL

In this £dion we present BSPLND’s multidimensional BA algorithm.
This agorithm and BSPLND’s B-spline refinement algorithm in the
next sedion are the basic building blocks of BSPLND’'s MBA
algorithm, which will complete the dgorithm set. The name of the
BSPLND version d the BA agorithmisbsplnd_fitUL. (The UL stands
for “uni-level” asthe BA agorithm is used to cdculate a ontrol lattice
at onelevel in the wntrol lattice hierarchy in the MBA agorithm.)

The bspind_fitUL agorithm, listed below, accets sdtered data in
parameters x and z, where x is an array of the independent data and zis
an array of the dependent data. Given input parameters D and R for the
domain and range, respedively, and p for the number of scatered data
points, the dgorithm assumes that x is a (p x D)-element array and that
z is a (pxR)-element array. Furthermore, it asuumes the D
comporents of eat data point’s independent data ae stored in
contiguous memory locations, as well as the R comporents of eadh
data point's dependent data. The boundries of the scatered data
domain Q are passd to bspind_fitUL in parameters xMin and xMax,
D-element arrays, so that it can properly map the independent data to
the control lattice domain defined by input parameter M, aso a D-
element array. Inpu parameter return_dz is a bodean variable which
if true will cause bspind_fitUL to cdculate the deviation o the
cdculated approximation function from the data points, overwriting the
range of the data points in inpu/output parameter z. This feaure will
be useful to the MBA dgorithm in cdculating the control lattice
hierarchy. The sole output parameter @ represents the control lattice
objed. The dgorithm assumes the objed contains no meaningful data,
including a zeo-element control lattice aray in data field W.@ Thus,
bspind_fitUL will determine the wntrol lattices sze and alocae the
memory for it.

bspind_fitUL(p, D, X, R, Z{ | 1}, return_dz, M, xMin, xMax, ®{1})

> Populate control |attice object

bsplnd_rew(D, R, M, xMin, xMax, @)

> Calculate sizeof control lattice array and all ocate size elements
> for numerator 6 and denominator w of (7)

size « M[D-1] Ob.9D -1] [R

Alloc(d, size)

o U WN P

36

Alloc(w, size)
forj « Otosize— 1do
ofj] « wfj] <0
> For each data point, caculate its effect on the 4° control points
> nearby (actually, one set of 4° points per dimension of range).
forc - Otop-1do > Loop #2
> Locate data point relative to the D-dim. control lattice by
> cacg. the “anchor” index i[d] for each dm. d of the domain;
> Evaluate the four B-spline functions for each dmension d.
ford -« 0OtoD - 1do > Loop #21
Xmap — ®.slope[d] Ok[d + cD] + d.intercept[d]
i[d] « Xmapd-1
t[d] « Xmap — XmapO
eval_basis functions(t[d], CubicBsplines[d])
end
> Calculate the SSof the 4° B-spline products, W™ W in (6).
BsplineProdSumSgrs — 0
for TermCnt — Oto(1<<(2D))—1do > Loop #22
BsplineProd ~ 1
ford - OtoD-1do
k[d] « (TermCnt >> (2d)) & 0x3
BsplineProd — BsplineProd [CubicBsplinesd][k[d]]
end

> Loop #1

> Loop #22.1

BsplineProdSumSgrs ~ BsplineProdSumSgrs +BsplineProd O

BsplineProd
end
> Calculate a cntrol |attice for each dmension r of the range
forr - OtoR-1do > Loop #23
> Accum. effect of data point on the 4° cntrl. Pts. nearby for
> dim. r of range, using the results from Loops #2.1 and #22
for TermCnt — Oto (1<<(2D)) - 1do > Loop #23.1
Index1D — O
BsplineProd ~ 1
> Gen. 1 B-spline product (w¢ in (6)); cdc. 1D array
> index to ®.@independent of r (using i from Loop #21)
ford -« 0OtoD - 1do > Loop #23.1.1
k[d] — (TermCnt >> (2d)) & 0x3
BsplineProd — BsplineProd (CubicBsplines d][k[d]]
Index1D « Index1D + @.9d] (((i[d] + 1) + K[d])
end

> Complete 1D index to ®.¢ acounting for dim. r of range

Index1D — r +Index1D [R

> Calculate data point’s eff ect on one control point with (6)

phi_c « (BsplineProd [r + cR])/BsplineProdSumSgrs
> Indexing this one control point, acaimulate the
> numerator and denominator of (7)
o[Index1D] ~ o[Index1D] + BsplineProd [(BsplineProd [
phi_c
w[Index1D] ~ w[Index1D] + BsplineProd [BsplineProd
end > endfor each control point in the vicinity of data point
end > endfor each dmensionr of range
end > endfor each data point
> Calculate the control lattice using (7)
forj — Otosize—1do
if wfj] <>0then
@.dj] - gil/wlj]
else
@.dj] -0

> Loop #3

end

> Return the deviation of the approx. function defined by the lattice

> from the scattered data points, storing in i/o parameter z.
if return_dzthen

forc - Otop—1do > Loop #4

68 bspind_eval(®, Addr(x[cD]), 2)
69 forr - OtoR-1do

70 4r +cR] « Zr + cR] -Z[r]
71 end

72 > Cleanup

73 Freq)d)

74 Fredw)

> Loop #41

A wak through the @de of bspind_fitUL reveds that the BSPLND
version d the BA algorithm closely foll ows the logic of the extended
BA agorithm from Sedion3.1. This version havever, brings the BA
algorithm closer to implementation as it considers the data store for the
D-dimensional control lattice and it acourts for multiple dimensions
in the range of the scattered data.

The dgorithm first performs ome setup by initializing the @ntrol
lattice objed in parameter @ with a cdl to bspind_new. It then
allocaes gorage, one dement per control point, for locd arrays & and
w for acaimulating the numerator and denominator of (7) for ead
control point. After this stup, the dgorithm cdculates the
contribution o ead data point to the 4° control paints in its vicinity,
storing its contribution in the gpropriate 4° eements of 3 and w. This
isadualy dore for ead dmension d the range independently, so that
one data point effeds 4°R elements of and w. After eath data point
has been visited, the dgorithm cdculates ead control point by
dividing winto & element by element for anorzero denominator or sets
the ontrol point to zero otherwise. A control point in the latter
category does not have awy data points in its proximity data set.
Finally, the dgorithm cdculates the deviation o the cdculated
approximation function from the data points, if so requested.

In esence bspind fitUL cdculates R separate control lattices in
paralel, the dgorithm viewing ead comporent of the range & a
separate scdar range (R=1) applied against the full domain of the
data. Control lattice objed ® has been designed to acommodate
them, and the dgorithm is coded to store them in & separate from eat
other.

4.2.3 The BSPLND B-spline Refinement Algorithm:
bspind_refine

In this sdion we present BSPLND’s multidimensional B-spline
refinement algorithm, the second lesic building block of BSPLND’s
MBA agorithm. The name of the dgorithm, listed below, is
bspind_refine. The bsplnd_refine algorithm accepts a control |attice W
that has already been cdculated, and caculates a finer lattice defining
an equivalent approximation function, returning it in ouput parameter
W

bspind_refing(W, W'{1})

1 D~WD

2 R<W¥R

3 > Allocae memory for coarse lattice indices that will contribute
4 > toeach control point in the fine lattice and memory for weights.
5 capacity « 1

6 ford- OtoD-1do > Loop #1

7 capacity — capacity [B

8 M_tmp[d] — 2 [¥.M[d] — 3 refined lattice to be twice asfine
9 end

10 Alloc(Coarseldxs, capacity)

11 Alloc(Weights, capacity)

12 > Populate refined lattice to be twice as fine as the coarse

13 bspind_rew(D, R, M_tmp, ¥.xMin, W.xMax, ¥')

14 sze « Y.M[D-1] (W.9D -1 > AsaumeR=1

15 » Calc. thefinelattice, one control point at atime. Asaime R=1.

16 forj — Otosize—1do > Loop #2

17 > Resolve the 1D index j into its D-dimensional indices

18 rem«— j

19 for d « D—1downto 0 do > Loop #21

20 Fineldxg[d] — (remdivW¥'.9d]) -1 > (-1)-based indexing

21 rem — remmod W'.9d]

22 end

23 > Calculate the 1D array indices of the coarse lattice W and their

24 > welghts that contribute to the current control point j in the

25 > refined lattice W'. To do o, use the D-dimensional indices of

26 > control pt. j to locate the related D-dimensional indicesin the

27 > coarse lattice and convert these badk to a 1D index.

28 Coarseldxg[0] — O

29 Weights[0] — 1.0

30 NumWagts — 1

31 ford - OtoD-1do > Loop #22

32 > odd index

33 if Fineldxs[d] & 0x1 <> 0 then begin

34 Minldx — (Fineldxs[d] — 1)/2+ 1 > 0-based indexing

35 for i « NumWgts— 1downtoOdo > Loop #22.1

36 Coarseldxg[2i + 1] ~ Coarseldxd[i] + (Minldx + 1) O
Y.q9d]

37 Coarseldxg[2i] — Coarseldxd[i] + (Minldx) (.9 d]

38 Weights[2i + 1] — Weights[i] ({0.5)

39 Weights [2i] — Weights[i] ({0.5)

40 end

41 NumWats — NumWgts (2

42 end

43 > even index

44 else begin

45 Minldx — (Fineldxs[d]/2 — 1) + 1 > 0-based indexing

46 for i « NumWgts— 1downtoOdo > Loop #22.2

47 Coarseldxg[3i + 2] ~ Coarseldxd[i] + (Minldx + 2) O
Y.q9d]

48 Coarseldxg[3i + 1] ~ Coarseldxg[i] + (Minldx + 1) O
Y.q9d]

49 Coarseldxg[3i] « Coarseldxd[i] + (Minldx) (¥.9d]

50 Weights[3i + 2] — Weightg[i] [{0.125

51 Weightg[3i + 1] — Weightg[i] [{0.75)

52 Weights[3i] — Weightd[i] [{0.125)

53 end

54 NumWgts — NumWigts (3

55 end

56 end > endfor dimension of the domain

57 > Calculate the control points. Account for R>1, so that we are

58 > computing each of the Rlatticesin W' in parallel.

59 forr - OtoR-1do > Loop #23

60 W.dr+jR -0

61 forr « OtoR-1do > Loop #24

62 for i « OtoNumWgts— 1 do

63 W.dr+jR] « Y.dr +jR] + W.¢r + Coarseldxd[i] [(R] O
Weightd]i]

64 end

The dgorithm first performs ome setup by popuating W' with a cadl to
bsplnd_new. Thislatticewill have the same values as W for data fields
D, R, xMin, and xMax because the domain and range do nd change;
however, it will have different vaues in fields M, S, slope, and
intercept which are dependent on the size of the lattice The setup
process also includes memory allocation for the 3P control points in
coarse lattice W that eath control point in refined lattice W' can

potentially relate to (in the 2D case there ae nine), and the
correspondng weights that will blend these mntrol paintsinto the one.
Then in line 14, it cdculates the number of control points to cdculate
iny', assuuming R=1. After the setup, the dgorithm fill s these two data
stores Coarseldxs and Weights for ead) control point it must cdculate
in ¥'. This ocaurs in the Loop#2, where the one-dimensional index
for the airrent control point in W' is given by loop courter j. In
Loop#2.1, the one dimensional index j is resolved into its (-1)-based
D-dimensional indices and stored in Fineldxs. Recdl that this is the
indexing scheme presented by LWS in Figure 1. Then in Loop#2.2,
the two arrays Coarseldxs and Weights are cdculated soldly as a
function o these D indices (in Finel dxs).

Finally, in Loops #2.3 and #24, the control pointsin W (Coarsel dxs)
that contribute to the value of control point j in W' are blended (via
Weights) to give its value. Because the cdculation o Coarseldxs and
Weights is grictly a function d the geometric pasition o control point
j in the fine lattice, here we can perform this cdculation for eadh
dimensionr of the range, independently.

4.2.4 The BSPLND MBA Algorithm: bspind_fit

In this sdion we present BSPLND’s multidimensional MBA
algorithm to complete the dgorithm set. It is built from the BA
algorithm bspind_fitUL and the B-spline refinement agorithm
bspind_refine. It is the predecessor to the BSPLND padkage's
bspind_fit routine. After presenting this algorithm we'll discuss how
to modify it to be tolerance-based, cdculating the levels of B-spline
refinement required to adhieve a given level of acaragy in the
approximation function.

The bsplnd_fit algorithm foll ows the logic displayed in Figure 2b, the
LWS diagram for the MBA. Before listing it however, we list three
short algorithms that it cdls that correspondto this figure nicdy. The
first, bspind_finer, cdculates the next finer lattice ®y,; in the control
lattice hierarchy (see Figure 2b) given the aurrent lattice ®d, and the
current deviation o the hierarchy from the scatered data. It aso
cdculates the new deviation from the data of the now extended
hierarchy, to be fed into a subsequent cdl to bspind_finer. The
algorithm bsplnd_add cdculates a lattice & the sum of two equaly
sized lattices defined on the same domain of the scatered data (see
Figure2b). Finaly, the dgorithm bspind_delete frees the memory
dynamicdly alocaed in data field ¢ of the mntrol lattice objed,
allowing bsplnd_fit to reuse memory used by previous levels in the
hierarchy as the dgorithm progresses.

bspind_finer(®, p, x, dZ{ 1 1}, ®_next{1})
> Next latticein hierarchy isto be twice asfine.
ford -« 0to®.D—1do

M_tmp[d] — 2 Ob.M[d] -3
> Calculate next lattice in hierarchy and return deviation in dz
bspind_fitUL(p, ®.D, x, ®.R, dz, TRUE, M_tmp, ®.xMin, ®.xMax,
®_next)

arwn e

bspind_add(®1, ®2, ®_sum{1})

1. > Populate sum.

2 bspind_rew(®1.D, ®1.R, ®1.M, ®1.xMin, d1.xMax, ©_sum)
3. > Sum corresponding control points.

4. size « ®1LM[P1.D -1 Bp1.§P1.D -1] IPLR

5. fori — Otosize—1do

6 O _sum.gfi] « PL.di] + P2.4i]

bspind_celete(d{ 1 1})
1. if ®.¢ <>NIL then
2. Fred®.¢)

The listing for bspind_fit follows. Notice that the parameter list
matches the BA agorithm bsplnd_fitUL, except that the dependent
datais grictly an input parameter (2), and the aldition o parameter h,
the number of levels of B-spline refinement. Indeed, when h=0
bsplnd_fit reduces to bsplnd_fitUL. Since bsplnd_fit is a pubic
routine in implementation (as oppcsed to bsplnd_fitUL) we dor't edit
the user's data. Note that in returned lattice W, data field M is not the
same & inpu parameter M. Each level in the hierarchy above level
zero doubes the lattice sizein the cdl to bspind_finer. The dgorithm
direaly mapsto Figure 2b.

bspind_fit(p, D, x, R, z, M, xMin, xMax, h, W{1})

1 > currentlatticein hierarchy: @

2 > current unrefined lattice: W

3 > current refined lattice: W'

4 WY ~NIL »>initialize important for memory reuse

5 > Storage for the delta of thelattice from the scattered data points.
6 > Start with the dataitself.

7 Alloc(dz, pR)

8 forc~ Otop-1do > Loop #1

9 forr - OtoR-1do > Loop #11

10 dZr + cR] ~ Zr +cR]

11 > Calculate one control lattice W = to the control lattice hierarchy
12 for k « Otohdo > Loop #2

13 AtFirstLevel — (k=0)

14 if W.¢ <>NIL then

15 bspind_ddete(W) > memory reuse

16 >W=0+Y (Figure 7b)

17 if AtFirstLevel then

18 bspind_fitUL(p, D, x, R, dz, TRUE, M, xMin, xMax, ¥)

19 else

20 bspind_add(®, V', W)

21 AtLastLevel — (k=h)

22 if not AtLastLevel then

23 bspind_dlete(W') > memory reuse

24 > Refine W into W' (Figure 2b)

25 bspind_refing(W, ¥')

26 > Next finer ® in hierarchy from current deviation (Figure 2b)
27 if AtFirstLevel then

28 bsplnd_finer(W, p, X, dz, ®)

29 else

30 bspind_finer(®, p, x, dz, ®)

w
g

end

32 end

33 Wheh

34 bspind_ddete(¥")
35 bspind_cHete(d)
36 Freqdz)

> copy levels of refinement into lattice object
> cleanup

4.2.4.1 The BSPLND Tolerance-Based MBA Algorithm
The bsplnd_fit algorithm can be modified to accet a tolerance or
measure of acarragy the function must achieve in its approximation o
the scatered data. After cdculating the aurrent value of W in line 18
(or 20), we can modify bsplnd_fit to measure the gproximation error
of W and exit the loopif it falls below the user-spedfied tolerance (a
new parameter). Of course, we dso modify Loop#2 to be condtion-
based onthe eror meding the tolerance rather than iteration-based on
inpu h. Given p instances of scatered dependent dataz = {(zy, Z;,
ey Zr10)}, We denote the deviation o W from z as Az = {(Azy, Azy ¢,
..., AZz 1 0)}. We cdculate the root mean square aror with

where & before p isthe number of scatered data points.

Note that if the scattered datais not truly functional in nature, then the
tolerance spedfied by the user may never be readed. The tolerance
based BSPLND MBA algorithm, bsplnd_fitToTol, reguires a maximum
number of levels of B-spline refinement to use (a maximum value for
h) asinput so that it can halt if the cdculated function is not meeing
the tolerance.

5. BSPLND Implementation

The BSPLND package has been written in the C programming
language. The library consists of four primary routines. bspind_fit,
bspind_fitToTol, bsplnd_eval, and bsplnd_delete. In addition to these,
the library comes with three alditional routines that are used by the
MBA implementers bspind_fit and bspind_fitToTol to perform their
work: bsplnd_finer, bsplnd_refine, and bspind_add. They are included
in the library for the alvanced user who would like to write routines
similar to bsplnd_fit and bspind_fitToTol. A user’s guide to the library
isin available in the form of a manual page. The user’s guide includes
the function prototype and gives a detailed spedficaion o ead
routine. It aso lists al error condtions reported by the library. The
BSPLND algorithms mentioned ealier that are not in the pubic
interface to this library have a correspondng private routine in the
library (e.g. bspindfit_UL).

5.1 Application

BSPLND is a general-purpose program that works with data having an
arbitrary number of dimensions for both its domain and range.
Therefore it can be gplied in avariety of applications, such as

e windvelocity in athreedimensional volume
e dtitudesonamap

e a ompressed multi color image

e fluid flow in ariver

e tissiedensity in aCAT or MRI scan

e temperaturein afurnace

5.2 FutureWork

The implementation o one alditional algorithm in [1], the Adaptive
BA agorithm would be a valuable aldition to BSPLND. The
agorithm ensures interpolation o the data by using the MBA
agorithm to a number of levelsin the hierarchy such that ead control
point has asingle paint in its proximity data set. Thisis smilar to the
BSPLND routine bspind_fitToTol. However, becaise asingle pair of
close data points may require @y, to become very dense even though all
other data points are sparsely distributed, the alaptive gproad is to
store only those cntrol points that lie in the 4 x 4 neighbarhood d
ead datapoint (in the 2D case), thereby conserving memory. Ancther
useful addition to the library would be an integration routine that
would accept the goproximation function defined by a cntrol lattice
@, aong with an interva that is ©me subset of the domain, and
integrate the function over the spedfied interval. For example,
integrating a density function over a threedimensional volume would
give the total massof the substancein that volume.

6. ACKNOWLEDGMENTS

Dr. Robert Lewis srved as the primary author’'s advisor and the chair
of his committeg in completion o his master's degree work at
Washington State University. He would like to thank Dr. Lewis for his
help on al aspeds of this projed, including his assstance in the
development of the BSPLND algorithms, his development of an
applicaion to dsplay output from BSPLND in Geomview [4], and hs
review of the projed paper. His colleague Alain Fournier provided the
B-spline refinement algorithm in multiple dimensions implemented in
BSPLND.

7. REFERENCES

[1] Lee Wolberg, Shin, “Scatered Data Interpolation with Multil evel
B-Splines’, IEEE Transactions on Visualization and Computer
Graphics, Vol. 3, No. 3, July-September 1997

[2] Cormen, et. d., “Introduction to Algorithms’, The MIT
Press Cambridge, Massachusetts, 1990

[3] Wolfram, S., “Mathematica A System for Doing
Mathematics by Computer”, 2" edition, Addison-Wesley
Publi shing Company, Reading, Massachusetts, 1993

[4] Philli ps, et. d., “Geomview Manua”, Software
Development Group, The Geometry Center, University of
Minnesota.

