
BSPLND, A B-Spline N-Dimensional Package for Scattered
Data Interpolation

Michael P. Weis
Tracker Business Systems

1835 Terminal Drive, Suite 220
Richland, WA 99352

1-509-946-5414

mike@vidian.net

Robert R. Lewis
Washington State University, School of EECS

2710 University Drive
Richland, WA 99352

1-509-372-7178

bobl@tricity.wsu.edu

ABSTRACT
The problem of scattered data interpolation is the fitting of a smooth
surface (or, more generally, a manifold) through a set of non-uniformly
distributed data points that extends to all positions in a domain.
Common sources of scattered data include experiments, physical
measurements, and computational values. Scattered data interpolation
assists in interpreting such data through the calculation of values at
arbitrary positions in the domain. Despite much attention in the
literature, scattered data interpolation remains a diff icult and
computationally expensive problem to solve. BSPLND is a software
package that solves this problem. It uses the scattered data
interpolation technique presented in [1] (hereafter, LWS). This
technique is fast and produces a C2-continuous interpolation function
for any set of scattered data using a hierarchical set of cubic B-splines.
BSPLND extends the technique to work with data having an arbitrary
number of dimensions for both its domain and range.

Categories and Subject Descriptors
I.3.4 [Graphics Utilities], I.3.5 [Computational Geometry and
Object Modeling], G.1.2 [Approximation], E.2 [Data Storage
Representations].

General Terms
Algorithms, Performance, Design.

Keywords
Scattered data interpolation, multil evel B-splines, data approximation.

1. INTRODUCTION
The scattered data interpolation technique presented by LWS is
discussed in the context of bivariate data where the independent data is
in 2D and the dependent data is a scalar. LWS develop the multil evel
B-spline approximation method and the simpler algorithm on which it
depends, the B-spline approximation method. The B-spline
approximation method defines an approximation function for a set of
scattered data in terms of uniform cubic B-spline basis functions on its
own merit, and the multil evel technique improves upon it.

In this paper, we will set up the problem in the context of bivariate data
in section 2, and then refer you to [1] for the details of the
mathematical development. In section 3, we extend the math to data
having an arbitrary number of dimensions in both its domain and
range. The design and implementation of BSPLND are presented in
sections 4 and 5, respectively.

2. Problem Definition for Bivariate Data
Let Ω = { (x, y) | 0 ≤ x < m, 0 ≤ y < n} be a rectangular domain in the
xy-plane, and P = { (xc, yc, zc)} be a set of scattered points in 3D space.
LWS define an approximation function f of this data as a uniform
bicubic B-spline function in terms of a control lattice Φ overlaid on
domain Ω. The control lattice is a (m+3) × (n+3) set of control points
that spans the integer grid in Ω. Restricting the control points to
integer values simpli fies the math, without loss of generality. Figure 1,
ill ustrates the relationship of Φ to Ω.

Φ

x

y

n +1

m + 1

n

1

0

-1
m0 1-1

φ00

φ0n

φm0

φmn

Ω

Figure 1. Control lattice configuration (from LWS).

Let φij be the value of the ij-th control point in lattice Φ, located at (i, j)
for i = -1, 0, …, m + 1 and j = -1, 0, …, n + 1. The approximation
function f is defined in terms of these control points by

∑∑
= =

++=
3

0

3

0
))(()()(),(

k l
ljkilk tBsByxf φ , (1)

where i = x – 1, j = y – 1, s = x – x, and t = y – y. Bk and Bl are
uniform cubic B-spline functions defined as

6/)1()(3ttBo −= ,

6/)463()(23
1 +−= tttB ,

6/)1333()(23
2 +++−= ttttB ,

6/)(3
3 ttB = ,

where 0 ≤ t < 1. These functions serve as blending functions, weighing
the contribution of each control point to f(x, y) based on its distance to
(x, y). Note that as B-spline curves, they sum to a value of one at each
value of t. The problem of determining f then, is reduced to solving for
the control points in Φ that best approximate the scattered data in P.

We refer the reader to [1] for the 2D mathematical development of
calculating control lattice Φ, which defines an approximation function
for fitting the scattered data. As mentioned in the introduction, LWS
present two methods for its calculation, the B-spline approximation
method, or BA algorithm, and its more capable descendant, the
multil evel B-spline approximation method, or MBA algorithm. In the
next section, we extend their mathematical development to data in any
number of dimensions.

3. Extending the Technique to Data of Arbitrary
Dimensionality
In handling scattered data having an arbitrary number of dimensions in
both its domain and range, we denote the number of dimensions in the
domain and range by D and R, respectively. Because each of the R
data values in the range of a data point are independent of each other,
we can determine one approximation function in terms of the
independent data for each dimension of the range. Solving this
problem then, can be reduced to solving R approximation functions
with domain D and range R = 1 and grouping the R functions in some
manner. The following is a derivation of the BA algorithm for a
domain of dimension D and the range a scalar.

3.1 The BA Algorithm
The development is similar to the 2D case. Let the domain be defined
as Ω = { (x0, x1, …, xD-1) | 0 ≤ x0 < m0, 0 ≤ x1 < m1,…, 0 ≤ xD-1 < mD-1}
and the scattered data be defined as P = { (x0,c, x1,c, …, xD-1,c, zc)} . The
control lattice Φ overlaid on Ω is a (m0+3) × (m1+3) × ⋅⋅⋅ × (mD-1+3) set
of control points that spans the integer grid in Ω. Let

110 −⋅⋅⋅ Diiiφ be the

i0i1⋅⋅⋅ iD-1-th control point in lattice Φ located at (i0, i1, …, iD-1) for i0 = -
1, 0, …, m0 + 1, i1 = -1, 0, …, m1 + 1, …, iD-1 = -1, 0, …, mD-1 + 1.
The approximation function is defined in terms of these control points
by

∑∑ ∑ ∏

∑∑ ∑

= =
+⋅⋅⋅++

=

−

=

= =
+⋅⋅⋅++−

=
−

−−

−

−−−

−






⋅⋅⋅=

⋅⋅⋅⋅⋅⋅=⋅⋅⋅

3

0

3

0
)())((

3

0

1

0

3

0

3

0
)())((1

3

0
10110

0 1

111100

1

0 1

1111001

1

10

)(

)()()(),,,(

k k
kikiki

k

D

d
dk

k k
kikikiDk

k
kkD

DD

D

d

DDD

D

tB

tBtBtBxxxf

φ

φ
(2)

where id = xd – 1 and td = xd – xd for d = 0, 1, …, D-1 (one per
dimension d of the domain). Each of the

dkB are uniform cubic B-

spline functions defined earlier, where each of the D subscripts kd = 0,
1, 2, 3, and the D arguments td range from zero to one: 0 ≤ td < 1. Thus

in (2) we extend the tensor product form of (1) to generate the function
f for a D-dimension domain.

Similar to the 2D case, the problem of determining f is to solve for the
control points in Φ that best approximate the scattered data in P. To
start, we consider one data point in P, (x0,c, x1,c, …, xD-1,c, zc) and its
relationship to the 4D control points in its neighborhood. Assuming
that 1 ≤ x0,c, x1,c, …, xD-1,c < 2 as LWS do in the 2D case, then control
points

110 −⋅⋅⋅ Dkkkφ for k0, k1, …, kD-1 = 0, 1, 2, 3 determine the value of f

at (x0,c, x1,c, …, xD-1,c). For f to evaluate to zc at (x0,c, x1,c, …, xD-1,c), the
control points

110 −⋅⋅⋅ Dkkkφ must satisfy

∑∑ ∑
= =

⋅⋅⋅
=

⋅⋅⋅ −

−

−
⋅⋅⋅=

3

0

3

0

3

00 1

110

1

110
k k

kkk
k

kkkc D

D

D
wz φ , (3a)

where
110 −⋅⋅⋅ Dkkkw = ∏

−

=

1

0

)(
D

d
dk tB

d

 and td = xd,c – 1 for d = 0, 1, …, D-1.

We convert (3a) to matrix notation, by defining column vectors W =

[
110 −⋅⋅⋅ Dkkkw | k0, k1, …, kD-1 = 0, 1, 2, 3]T and Φ

�
 = [

110 −⋅⋅⋅ Dkkkφ | k0, k1, …,

kD-1 = 0, 1, 2, 3]T:
�

W T
cz = . (3b)

Note that Equation (3) is a hyperplane in 4D-space in unknowns

110 −⋅⋅⋅ Dkkkφ . Specifying the same minimization constraint as LWS for

the 2D case, that the sum of the squares of the 4D variables

110 −⋅⋅⋅ Dkkkφ (Φ
� T Φ

�
) be minimized, amounts to locating the point on this

hyperplane that is closest to the origin. This constraint is chosen to
minimize the deviation of f from zero over the domain Ω. The
parametric form of the line through the origin perpendicular to the
hyperplane is given by

W
�

u= , (4)

where W represents a normal vector to the hyperplane and u is a scalar.
Substituting (4) into (3b) yields

WW T
c uz =

Solving for u and substituting into (4) gives the solution:

WW

W�

T
cz

= . (5)

Summarizing, the 4D equations given by (5) are the solution to control
points

110 −⋅⋅⋅ Dkkkφ in the vicinity of data point (x0,c, x1,c, …, xD-1,c).

Therefore, by direct substitution of (5) into (3b) we see that function f
evaluates to zc at data point (x0,c, x1,c, …, xD-1,c). Equation (5) is the
general solution to the 2D case presented in LWS, where there are
42 = 16 control points in the vicinity of any given data point.

Next we consider the effects of all the data points in P on control
lattice Φ. For each data point, (5) can be used to evaluate the 4D

control points in its neighborhood. When the neighborhoods of two
data points overlap, multiple assignments to a control point occur via
(5). To resolve multiple assignments to a control point, LWS consider
all the data points in its neighborhood, calli ng this set of data points its
proximity data set. The proximity data set of the single control point

110 −⋅⋅⋅ Diiiφ is given by
110 −⋅⋅⋅ DiiiP = { (x0,c, …, xD-1,c, zc) ∈ P | i0 – 2 ≤ x0,c < i0

+ 2, …, iD-1 – 2 ≤ xD-1,c < iD-1 + 2} . For each data point in
110 −⋅⋅⋅ DiiiP , (5)

gives the single control point
110 −⋅⋅⋅ Diiiφ a different value φc:

WWT
cc

c

zw
=φ , (6)

where wc =
110 −⋅⋅⋅ Dkkkw = ∏

−

=

1

0

)(
D

d
dk tB

d

, and kd = id – (xd,c –1) and

td = xd,c – xd,c for d = 0, 1, …, D-1. To resolve multiple assignments
to control point

110 −⋅⋅⋅ Diiiφ , we follow LWS in their 2D approach by

minimizing the error e(
110 −⋅⋅⋅ Diiiφ) = Σc(wc

110 −⋅⋅⋅ Diiiφ – wcφc)
2, where the

term (wc
110 −⋅⋅⋅ Diiiφ – wcφc) is the difference between the real (wc

110 −⋅⋅⋅ Diiiφ)

and expected (wcφc) contributions of
110 −⋅⋅⋅ Diiiφ to function f at (x0,c, x1,c,

…, xD-1,c). Taking the derivative of approximation error e with respect
to

110 −⋅⋅⋅ Diiiφ and equating the result to zero to find a minimum gives:

∑
∑=

−⋅⋅⋅

c c

c cc

iii w

w
D 2

2

110

φ
φ . (7)

Developing the pseudocode for the BA algorithm to handle an arbitrary
number dimensions in the domain is a straightforward extension of the
algorithm by LWS using the derivation given here. Recall that this
derivation assumes that R = 1, and as such the solution is applied once
for each dimension of the range of dimension R. This aspect of the
algorithm shall be presented in Section 4 in the discussion of
BSPLND. Here is the BA algorithm extended to a D-dimensional
domain.

BA Algorithm (R = 1)
Input: scattered data P = { (x0,c, x1,c, …, xD-1,c, zc)}
Output: control lattice Φ = {

110 −⋅⋅⋅ Diiiφ }

for all i0, i1,… , iD-1 do
let

110 −⋅⋅⋅ Diiiδ = 0 and
110 −⋅⋅⋅ Diiiω = 0

for each point (x0,c, x1,c, …, xD-1,c, zc) in P do
for each dimension d = 0 to D-1 do

let id = xd,c – 1
let td = xd,c – xd,c

end

compute ∑ ∑ ∑= = =− −⋅⋅⋅
⋅⋅⋅3

0

3

0

3

0

2

0 1 1 110k k kD Dkkk
w (WT W)

for k0, k1, …, kD-1 = 0, 1, 2, 3 do
compute

110 −⋅⋅⋅ Dkkkw , an element of W

compute
110 −⋅⋅⋅ Dkkkφ , an element of Φ

�
, using (5)

add
110110

2

−−⋅⋅⋅ ⋅⋅⋅ DDkkk kkkw φ to
)())((111100 −− +⋅⋅⋅++ DD kikikiδ

add 2

110 −⋅⋅⋅ Dkkk
w to

)())((111100 −− +⋅⋅⋅++ DD kikikiω
end

end

for all i0, i1,… , iD-1 do
if

110 −⋅⋅⋅ Diiiω ≠ 0 then

compute
110 −⋅⋅⋅ Diiiφ =

110 −⋅⋅⋅ Diiiδ /
110 −⋅⋅⋅ Diiiω , using (7)

else let
110 −⋅⋅⋅ Diiiφ = 0

end

The BA algorithm has three major loops. In the first loop, the
algorithm initializes the numerator and denominator of (7) for each
control point in Φ. The second loop visits each data point, first
calculating its effect on the 4D control points in its neighborhood with
(5), and second accumulating the numerator and denominator of (7).
The third and final loop optimizes the multiple assignments to each
control point by applying (7), if its particular denominator is nonzero;
otherwise it is assigned a value of zero.

3.2 The MBA Algorithm
A tradeoff exists between the shape smoothness and the approximation
accuracy of B-spline function f generated by the BA algorithm. LWS
develop the multil evel B-spline approximation method, or MBA
algorithm, to generate a function that is both smooth in shape and that
closely approximates the data in P.

This MBA algorithm generates a hierarchy of control lattices, each via
the BA algorithm, that represent a sequence of functions, the sum of
which is the desired approximation function. The first function in the
sequence is derived from a coarse lattice. The accuracy of this initial
function on data in P is improved upon by subsequent functions in the
sequence derived from finer lattices. Improving further upon this
multil evel algorithm, LWS formulate a technique called B-spline
refinement to reduce this sum of B-spline functions into one equivalent
B-spline function. We refer the reader to [1] for the detailed
development of the multil evel approach in 2D. However, we will
briefly summarize the algorithm through the reproduction of a
graphical ill ustration and the algorithm pseudocode from [1].

The MBA algorithm comes in two forms, each generating the same
approximation function f. The first form, the basic MBA, generates a
hierarchy of coarse to fine control lattices Φ0, Φ1, …, Φh, overlaid on
domain Ω and representing a sequence of functions fk, the sum of
which is the desired result f. The coarsest lattice Φ0 is chosen to
approximate the data in P via the BA algorithm. The difference
between the data in P and the initial function f0 evaluated at the data in
P (specifically, zc - f0(x0,c, x1,c, …, xD-1,c)) serves as input to the next
application of the BA algorithm to generate the next control lattice Φ1,
chosen by LWS to be twice the size (or density). This process
continues for the calculation of subsequent lattices, each twice the size
as the previous in the sequence, as applications of the BA algorithm for
the lattices beyond Φ0 serve to remove the residual error. Figure 2a
ill ustrates the basic MBA for the 2D case.

evaluate

control lattice
hierarchy

evaluate

evaluate

evaluate

B-spline function
sequence

approximation

function f

+

+

+

=

f0

f1

f2

f3

(a) without B-spline
 refinement

+

+

+ =

=

=

=

refine

refine

refine

evaluate

approximation

function f

control lattice
hierarchy

progressive
control lattices

Φ0

Φ1

Φ2

Φ3

Ψ0 (Φ0)

Ψ1

Ψ2

Ψ3

)(00 Φ′Ψ′

1Ψ′

2Ψ′

(b) with B-spline refinement

Figure 2. Approximation function evaluation in the MBA
algorithm (from LWS).

Here is the algorithm for the basic MBA from LWS, modified for a
domain of dimension D. Note that ∆0zc = zc.

Basic MBA Algorithm (R = 1)
Input: scattered data P = { (x0,c, x1,c, …, xD-1,c, zc)}
Output: control lattice hierarchy Φ0, Φ1, …, Φh

let k = 0
while k ≤ h do

let Pk = { (x0,c, x1,c, …, xD-1,c, ∆kzc)
compute Φk from Pk by the BA algorithm
compute ∆k+1zc = ∆kzc - fk(x0,c, x1,c, …, xD-1,c) at each data pt.
let k = k + 1

end

Notice that evaluating f requires (h+1) evaluations of a B-spline
function by (1), rather than a single evaluation afforded by the BA
algorithm (except when h=0). To eliminate this extra overhead in
computation, which can be significant if f is evaluated for a large
number of points in Ω, LWS formulate a technique they call B-spline
refinement, ill ustrated in Figure 2b. This technique will reduce the
(h+1) B-spline functions into one equivalent B-spline function. This is
the second form of the MBA algorithm.

The B-spline refinement technique is progressive in that it is applied at
each level in the control lattice hierarchy. Figure 2b ill ustrates the
process described here. Let F(Φ) denote the B-spline function
generated by control lattice Φ and let |Φ| denote the lattice size of Φ.
Starting with the initial control lattice in the hierarchy Φ0, a new
control lattice Φ′0 can be derived through B-spline refinement such
that F(Φ′0) = F(Φ0) = f0 and |Φ′0| = |Φ1|. In other words, Φ′0 can be
derived which defines an equivalent B-spline function to Φ0, but which
has the size of the next lattice in the hierarchy Φ1. Then the sum of
functions f0 + f1 can be satisfied by a single lattice Ψ1 which results
from the sum of each corresponding control point in Φ′0 and Φ1.
Referring to Figure 2b, we continue the progression at the next level
with lattice Ψ1, applying B-spline refinement to derive lattice Ψ′1 such
that F(Ψ′1) = F(Ψ1) and |Ψ′1| = |Φ2|. The progression ends at the finest
lattice in the hierarchy.

The process is generalized by the following pseudocode by LWS,
modified for a domain of dimension D. In the algorithm, P – F(Φ)
represents the updated data { (x0,c, x1,c, …, xD-1,c, ∆k+1zc)} , where P =
{ (x0,c, x1,c, …, xD-1,c, ∆kzc)} and fk = F(Φ).

MBA Algorithm (R = 1)
Input: scattered data P = { (x0,c, x1,c, …, xD-1,c, zc)}
Output: control lattice Ψ
Let Φ be the coarsest lattice
Let Ψ′ = 0
while Φ does not exceed the finest control lattice do

compute Φ from P by the BA algorithm
compute P = P - F(Φ)
compute Ψ = Ψ′ + Φ
let Φ be the next finer control lattice in the hierarchy
refine Ψ into Ψ′ whereby F(Ψ′) = F(Ψ) and |Ψ′| = |Φ|

end

The B-spline refinement step, the last one in the loop, can be
performed by a variety of methods as noted by LWS. For the 2D case,
LWS choose to refine a (m + 3) × (n + 3) control lattice Φ into a
(2m + 3) × (2n + 3) lattice Φ′ whose control point spacing is half as
large as that of Φ. Then the refined lattice is the same size as the next
lattice in the hierarchy and the sum of the two lattices Ψ′ and Φ in the
algorithm is a simple matter of summing their corresponding control
points. Letting φij and φ′ij be the ij-th control point in Φ and Φ′,
respectively, then the position of control point φ′2i,2j in Φ′ corresponds
to control point φij in Φ. LWS define the following relationships
between the control points in Φ′ and those in Φ:

]36)(6[
64

1
,11,1,,11,11,11,11,12,2 ijjijijijijijijijiji φφφφφφφφφφ ++++++++=′ ++−−++−++−−−

)](6[
16

1
1,1,1,11,1,112,2 +++++−−+ +++++=′ jiijjijijijiji φφφφφφφ

)](6[
16

1
,11,11,11,1,2,12 jiijjijijijiji +++−++−+ +++++=′ φφφφφφφ

][
4

1
1,1,11,,12,12 ++++++ +++=′ jijijijiji φφφφφ

Note there are four equations for the 2D case. In general, there are 2D

unique equations, each relating a control point in Φ to up to 3D control
points in Φ′ in its vicinity. Notice that the factors that blend the
control points in Φ′ sum to one (for example, the four factors of ¼ in
the last of the four equations given here).

4. BSPLND Design
The BSPLND package implements the MBA algorithm, for data
having an arbitrary number of dimensions in its domain and range.
BSPLND provides its user with two options for calculating an
approximation function via the MBA algorithm given a set of scattered
data points – bsplnd_fit and bsplnd_fitToTol. Each routine returns a
data structure containing the control lattice that defines the
approximation function. The control lattice in this form can then be
passed to BSPLND’s bsplnd_eval routine to evaluate the function at
any independent data value, thereby implementing the D-dimensional
form of the approximation function in (2). Because the data structure
is allocated dynamically at run time, the package provides
bsplnd_delete to free this memory.

BSPLND provides the user with flexibilit y in its two separate
implementations of the MBA algorithm. The routine bsplnd_fit

accepts as input the number of levels of B-spline refinement (defined
by h - see the basic MBA), so that the user predetermines the size of
the control lattice hierarchy. When given h = 0 for no refinement,
bsplnd_fit implements the BA algorithm. The second routine,
bsplnd_fitToTol accepts a tolerance, or measure of accuracy, that the
approximation function must achieve in its evaluation at the scattered
data points. Therefore, this routine determines the number of levels of
B-spline refinement required to achieve this tolerance.

The primary challenge in implementing the MBA algorithm and the
supporting routines such as bsplnd_eval and bsplnd_delete, is the
programming and data structure design required to handle data with an
arbitrary number of dimensions in its domain and range. Because
BSPLND routines must accept the dimensionaliti es D and R of the
domain and range as input in order to properly interpret the scattered
data they receive, the dimensions of an array to store the D-
dimensional control lattice cannot be specified at compile time, but
rather must be determined at run time. The solution to this problem,
along with other features of the design, shall be discussed in this
section.

First we shall present the data structure design for storing the
D-dimensional control lattice and follow that discussion with the
procedural design for accessing the structure. This will be
accomplished through a set of procedures, or algorithms, that led to the
implementation of the BSPLND routines mentioned above. We will
start with the algorithm for bsplnd_eval, which demonstrates read
access to the data structure. This algorithm assumes that the control
lattice has already been calculated. It is the simplest of the algorithm
set and will help us introduce the more complex multidimensional BA
algorithm, which will now be presented in the context of the control
lattice data structure. This algorithm demonstrates write access to the
data structure, for it calculates the control lattice. We will follow this
with the multidimensional algorithm for B-spline refinement, which,
given a control lattice, generates a finer control lattice defining the
same approximation function. Then, we can use both the BA
algorithm and the B-spline refinement algorithm to build the MBA
algorithm, as ill ustrated in Figure 2b. This algorithm led to the
implementation of BSPLND routine bsplnd_fit and, with slight
modification, the routine bsplnd_fitToTol. We name a BSPLND
algorithm the same as its implemented counterpart when the algorithm
led directly to the implementation. Whether referring to the algorithm,
which led to the implementation, or the implementation itself, should
be obvious from the context.

4.1 Storage and Access to the D-Dimensional
Control Lattice
In the following discussion about the control lattice data structure we
will frequently reference the BA algorithm rather than the MBA
algorithm, because the BA algorithm actually calculates the control
lattice. The MBA algorithm uses the BA algorithm to calculate the (h
+ 1) lattices in the control lattice hierarchy.

The principal input to the BA algorithm is the set of scattered data
points P and the principal output is a D-dimensional control lattice Ψ
overlaid on the domain Ω of the data. In order to properly interpret the
scattered data the BA algorithm must also receive the number of
dimensions in the domain and range of the data, D and R, and the
number of data points, p. One method for storing the scattered data in
memory is with two separate data stores, a p × D two-dimensional
array for the independent data, and a p × R two-dimensional array for
the dependent data, where each of the p rows in these corresponding

arrays represent the abscissa and ordinate of one data point,
respectively. Let x = { (x0,c, x1,c, …, xD-1,c)} and z = { (z0,c, z1,c, …,
zR-1,c)} denote these two data sets, where x and z are the domain and
range of P, respectively. While the scattered data can conveniently be
stored in a two-dimensional array structure as detailed here, storage for
the output data, the control lattice, requires a D-dimensional array,
because the lattice is overlaid on the domain Ω of the data, as
ill ustrated in Figure 1. Herein lies the diff iculty in storing the lattice.
Because D is specified as input, the array dimensions cannot be
specified at compile time, but must be determined when the
implementation of the BA algorithm runs.

A review of how a two-dimensional array may be accessed as a one-
dimensional array will provide some insight into solving the problem
we face in storing and accessing the data for the control lattice. A
caller of the BA algorithm can pass scattered data x and z (along with
D, R, and p) as two-dimensional arrays. A conceptual view of x in
memory as a two-dimensional array, where subscript c varies over the
p data points from 0 to p - 1, is ill ustrated in Figure 3a.

(a) two-dimensional array

(b) one-dimensional array (two indices)

(c) one-dimensional array (one index)

x0,p-1 x1,p-1 xD-1,p-1

x0,1 x1,1 xD-1,1

x0,0 x1,0 xD-1,0

x0,0 x1,0 x0,1 x1,1 xD-1,1 x0,p-1 x1,p-1 xD-1,p-1 xD-1,0

x′0 x′1 x′Dp-1

Figure 3. The independent data x in a two-dimensional array and
corresponding one-dimensional array.

In this figure, we use a Cartesian indexing scheme that is consistent
with the indexing used for control points (see Figure 1), where the first
of the two indices is the fastest varying index, or subscript, indicating
contiguous memory locations. We shall continue with this convention
when introducing the multidimensional control lattice shortly. This is
contrary to the C-convention of indexing two-dimensional arrays
where the second index varies the fastest (row-major order). Either of
these two conventions can be used in converting a two-dimensional
index into a one-dimensional index.

From the caller’s perspective, passing x as a two-dimensional array
makes the most sense, for this is how the data is logically organized.
However, because the two-dimensional array is stored in a contiguous
set of memory locations, the BA algorithm can access the data as a
one-dimensional array of p × D elements, as ill ustrated in Figure 3b.
Figure 3b is derived from Figure 3a by traversing the data in Figure 3a
from left to right and bottom to top. As long as parameter x is passed
to the BA algorithm as a pointer to the first data value x0,0, the
algorithm can index it as a one dimensional array, using the following
relationship:

x′i + Dj = xi, j, (8)

where i and j represent the two-dimensional array indices. Figure 3c
ill ustrates the one-dimensional indexing of array x. The BA algorithm
accesses the scattered data in input x and z in this fashion. This gives
the caller the freedom to pass x (and z) as a two-dimensional or a one-
dimensional array, as long as it passes the algorithm a pointer to the
first element in the array (along with values for D, R, and p).

We can store the D-dimensional control lattice in a one-dimensional
array and accesses it in a similar manner. The array is allocated at run
time with a capacity of (m0+3) × (m1+3) × ⋅⋅⋅ × (mD-1+3) × R elements,
one for each control point in the lattice. Recall that when R > 1 we can
calculate a separate lattice for each dimension of the range under the
assumption that R = 1 for that particular dimension. Taking this
discussion in steps, we assume R = 1 for now. Afterwards we shall
elaborate on how the storage and access of the lattice is affected when
R > 1. When R = 1, the one-dimensional array consists of (m0+3) ×
(m1+3) × ⋅⋅⋅ × (mD-1+3) elements. To demonstrate, consider a three
dimensional domain (D = 3). Figure 4 ill ustrates the three-dimensional
view of the control lattice using the Cartesian indexing scheme.

S1 = M0

φ 1,1,1 21 −− MM

φ 1,1,1 2 −M

φ0,1,0 φ1,1,0 φ 0,1,10 −M

φ0,0,0 φ1,0,0 φ 0,0,10 −M

S0 = 1

φ0,0,1 φ1,0,1 φ 1,0,10 −M

φ 1,1,10 −M

φ 1,1,1 10 −− MM

S
2 = M

0M
1

φ 1,0,0 2 −M φ 1,0,1 2 −M φ 1,0,1 20 −− MM

φ 1,1,1 20 −− MM

φ 1,1,1 210 −−− MMM

φ 0,1,0 1 −M φ 0,1,1 1 −M φ 0,1,1 10 −− MM

Figure 4. Three-dimensional control lattice.

Similar to the subscripting of independent data store x, we use zero-
based indexing for the control points and have simpli fied subscripting
with a change of variable, so that

Md = md + 3, (9)

for d = 0, 1, …, D-1. Md is the number of contiguous control points in
dimension d of the domain. Similar to the two-dimensional example
for independent data store x, the first dimension (d = 0) is along the
horizontal from left to right and represented by the first subscript, the
second (d = 1) is along the vertical from bottom to top and represented
by the second subscript, and the third dimension (d = 2) is into the
page from front to back and represented by the third subscript. The
figure introduces the concept of the stride represented by variable S.
The stride will provide the means of indexing the one-dimensional
array in this example that is similar to the two-dimensional case in (8).
If all M0M1M2 elements in the three dimensional array were laid out
end-to-end, then Sd is the number of elements between two adjacent
elements in dimension d. Figure 5 ill ustrates the one-dimensional
array storage of the three-dimensional control lattice and the stride S.

φ 1,0,0 2 −M φ 1,1,1 210 −−− MMM

S0 = 1

S1 = M0

S2 = M0M1

φ0,0,0 φ1,0,0 φ 0,0,10 −M φ0,1,0 φ 0,1,10 −M φ 0,1,0 1 −M φ 0,1,1 10 −− MM φ0,0,1 φ 1,1,1 10 −− MM

φ′0 φ′1 φ′ 10 −M φ′ 110 −MM

φ′ 1210 −MMM

S0 = 1

S1 = M0

S2 = M0M1

φ′
0M φ′

10MM

(a) one-dimensional array (three indices)

(b) one-dimensional array (one index)

Figure 5. Storing the control lattice in a one-dimensional array.

Notice how the stride maps from the three-dimensional view in
Figure 4 to the one-dimensional view of the data in Figure 5a. We can
specify the one-dimensional array index for the control lattice,
ill ustrated in Figure 5b, as a function of the three-dimensional array
indices and the stride S as

kjikSjSiS ,,210
φφ =′ ++ . (10)

where S0 = 1, S1 = M0, and S2 = M0 M1 from Figures 4 and 5. For
example for control point φ1,0,1, the one-dimensional array index is

1×S0 + 0×S1 + 1×S2 =

1×1+ 0× M0 + 1× M0 M1 = M0 M1 + 1.

Explaining this result, we notice from Figure 4 that starting at the
initial control point φ0,0,0, and traversing them from left to right, bottom
to top, and front to back in the order we would lay them out in one
dimension, that control point φ1,0,1 is the (M0 M1 + 2)th control point in
the sequence. With zero-based indexing, the index to the
corresponding one-dimensional array is M0M1 + 1, as calculated.

We can extend this three-dimensional example to the general case
where the domain is of D dimensions. Notice that in this example that
the stride is increasing as the dimension of the data (d) increases, as
more elements must be skipped to reach the adjacent element in
dimension d. We apply the pattern that develops in the three-
dimensional case to D dimensions to define the stride recursively as

Sd = Sd-1 Md-1, (11)

where S0 = 1 and d = 1, 2, …, D-1. The one-dimensional array index is
then a function of the D-dimensional indices and the stride:

110
1

0

110111100

,,,

,,,

−
−

=

−−−

⋅⋅⋅

⋅⋅⋅⋅⋅⋅+

=
∑
′

=′

D
D

d dd

DDD

IIISI

IIISISISI

φφ

φφ
, (12)

where Id = 0, 1, …, Md – 1, and Id = id + 1 for d = 0, 1, …, D-1. Recall
that id was used in the (-1)-based indexing for the multidimensional
control lattice introduced in Section 3.1. Notice that (8) is the two-
dimensional application of the general case.

We now elaborate on the case where R > 1. As we mentioned in
Section 3, when the range of the scattered data is a vector (R > 1), we
solve R approximation functions, one for each dimension of the range,
and group them in some manner. We can accommodate the R control
lattices defining these R functions by increasing the control lattice
array from M0M1⋅⋅⋅ MD-1 elements to M0M1 ⋅⋅⋅ MD-1×R elements. In
essence, each control point is an R-element vector. Figure 6 ill ustrates
a two-dimensional conceptual view of this storage, where the first array
index is for the dimension of the range and the second is the one-
dimensional index calculated with (12), so that the R values for each
control point “vector” are adjacent in memory.

φ 1,0 10 −⋅⋅⋅ DMMM φ 1,1 10 −⋅⋅⋅ DMMM φ 1,1 10 −− ⋅⋅⋅ DMMMR

φ0,1 φ1,1 φR-1,1

φ0,0 φ1,0 φR-1,0

Figure 6. Two-dimensional view of complete control lattice.

In this case the two values of stride are S0 = 1 and S1 = R. Accessing
this as a one-dimensional array is straightforward from (8):

jrjRr ,φφ =′+ , (13)

where r = 0, 1, …, R-1 and j = 0, 1, …, M0M1 ⋅⋅⋅ MD-1 – 1. Thus, we
index the control lattice as a one-dimensional array with two steps: first
by (12), then by (13). Combining the two relationships yields,

[] 110
1

0
,,, −

−

=
⋅⋅⋅+

=
∑

′
D

D

d dd
IIIrRSIr

φφ . (14)

4.2 BSPLND Algorithms
4.2.1 Evaluation of the Approximation Function with
bsplnd_eval
The bsplnd_eval algorithm evaluates an approximation function
defined by control lattice Ψ at one position (x0, x1, …, xD-1) in the
domain Ω; in other words, it implements (2). This algorithm shall
demonstrate the procedural design for accessing the one-dimensional
array of the D-dimensional control lattice with (14). It assumes that
the control lattice has been calculated (for example, via the BA
algorithm).

First, we introduce the data structure of the object that encapsulates the
control lattice data store and several other data elements. The
additional data or fields of this structure include data required of the
user of BSPLND to calculate the control lattice (e.g., D and R) and
calculated data (e.g., S) useful to several of the BSPLND algorithms.
Rather than pass them as separate parameters or require their
calculation in each algorithm, they are packaged into this one structure
and the structure (or a pointer to it) is communicated as a whole.
Table 1 lists the data fields of this structure.

Table 1. Data structure for storing control lattice.

Field Array Size Description
φ M[0]M[1]…

M[D-1]R
Number of control points in
control lattice.

S D The stride.
D Scalar No. of dimensions in the domain.
R Scalar No. of dimensions in the range.
M D No. of control points in one

dimension of the domain.

xMin,
xMax

D,
D

Lower and upper boundary values
of the domain, one per dimension
of the domain.

slope,
intercept

D,
D

Fields slope and intercept represent
a transformation function from the
domain of the scattered data to the
domain of the control lattice.

h Scalar No. of levels of B-spline
refinement used in calculating this
control lattice.

Data fields D, R, S, and M maintain their definitions. Fields xMin and
xMax are D-element arrays of real numbers that specify the lower and
upper bound of the domain Ω in each dimension d. Fields slope and
intercept are D-element arrays of real numbers that define a linear
mapping function from domain Ω of the scattered data to the domain
of the control lattice. We define the domain of the control lattice as
follows. It is not reasonable that the BSPLND user be required to
specify the domain Ω as defined in Section 3.1, such that the control
points span the integer grid in Ω. Therefore, we define the domain of
the control lattice to be one defined similar to the one in Section 3.1
for Ω as { (x′0, x′1, …, x′D-1) | 0 ≤ x′0 < M0 - 3, 0 ≤ x′1 < M1 – 3,…,
0 ≤ x′D-1 < MD-1 – 3} and map domain Ω to it, so that 0 (zero)
corresponds to xMin[d] in Ω and Md-1 – 3 = M[d] – 3 corresponds to
xMax[d] in Ω, for all d. We then can map any position (x0, x1, …, xD-1)
in the scattered data’s domain Ω to this domain using fields slope and
intercept, and still use the development in Section 3.1. Field h of this
data structure is the number of levels of B-spline refinement used to
calculate this lattice. Finally, data field φ is a M[0]M[1]…M[D-1]R-
element array of real numbers that are the control points of the control
lattice, initially zero elements in size.

All array sizes but that of array φ can be preset with some reasonable
upper limit on D without consuming too much memory, but because
the capacity of φ can become rather large in practice and can vary
widely, we dynamically allocate its storage prior to calculating it in the
BA algorithm.

Before listing the bsplnd_eval algorithm, we introduce three
algorithms. The first calculates the stride S:

calc_stride(D, M, S{ ↑})
1 S[0] ← 1
2 for d ← 1 to D – 1 do
3 S[d] ← S[d–1] ⋅ M[d–1]
4 end

The mapping function stored in fields slope and intercept is calculated
in the bsplnd_new algorithm. The bsplnd_new algorithm initializes the
control lattice object Φ (Table 1). It accepts D, R, M, xMin, and xMax
as input (ultimately from the BSPLND user) and control lattice object
Φ as output. It populates Φ, including fields slope and intercept, for
the BA algorithm before the BA calculates the control lattice in field φ.
We shall use it later.

bsplnd_new(D, R, M, xMin, xMax, Φ{ ↑})

1 Φ.D ← D
2 Φ.R ← R
3 Φ.h ← 0
4 for d ← 0 to D – 1 do
5 Φ.M[d] ← M[d]
6 Φ.xMin[d] ← xMin[d]
7 Φ.xMax[d] ← xMax[d]
8 range ← xMax[d] – xMin[d]
9 Φ.slope[d] ← (M[d] – 3)/range
10 Φ.intercept[d] ← ((M[d] – 3) ⋅ xMin[d])/range
11 end
12 calc_stride(D, M, Φ.S)
13 � Calculate the capacity for field φ and allocate its memory
14 size ← M[D –1] ⋅ Φ.S[D –1] ⋅ R
15 Alloc(Φ.φ, size)

The BSPLND algorithms calc_stride and bsplnd_new use a
pseudocode that more closely resembles an actual programming
language like C or Pascal than do the algorithms by LWS in previous
sections. The BSPLND algorithms generally follow the pseudocoding
conventions in [2]. Note that an output parameter is indicated by { ↑}
in the formal parameter li st of an algorithm, and an input/output
parameter in indicated by { ↓↑} . Absence of a symbol after the
parameter denotes an input parameter. Also, for arrays in greater than
one dimension, we use the C subscripting convention of row-major
order.

Before listing the bsplnd_eval algorithm we present one more
algorithm, called eval_basis_functions, which evaluates the four
uniform cubic B-spline functions at a given value t. This algorithm is
called by bsplnd_eval.

eval_basis_functions(t, B{ ↑})
1 a ← 1 – t
2 b ← aa
3 c ← tt
4 d ← ct
5 B[0] ← ab/6
6 B[1] ← d/2 – c + 2/3
7 B[2] ← -d/2 + c/2 + t/2 + 1/6
8 B[3] ← d/6

After execution of this algorithm, array B contains the four B-spline
function evaluated at t: B0(t), B1(t), B2(t), and B3(t). The four B-spline
functions are not readily recognizable in eval_basis_functions, because
the algorithm calculates them with the minimum number of operations
possible. We used the software application Mathematica [3] to
determine the quickest means of calculating these four functions,
because this algorithm is called D times for each scattered data point
input into the BA algorithm given later.

We now list the bsplnd_eval algorithm, which implements (2) by
evaluating the approximation function stored in control lattice object Ψ
at independent data stored in D-element array X. It returns the result in
the R-element array Z.

bsplnd_eval(Ψ, X, Z{ ↑})
1 � Locate the independent data X relative to the control lattice
2 � with the “anchor” index i[d] for each dim. d of the domain
3 � and evaluate the four B-spline functions for each dim. d.
4 for d ← 0 to Ψ.D – 1 do � Loop #1
5 Xmap ← Ψ.slope[d] ⋅ X[d] + Ψ.intercept[d]
6 i[d] ← Xmap – 1 � id in (2)
7 t[d] ← Xmap – Xmap � td in (2)
8 eval_basis_functions(t[d], CubicBsplines[d])

9 end
10 � Evaluate control lattice for each dim. r of the range.
11 for r ← 0 to Ψ.R - 1 do � Loop #2
12 Z[r] ← 0
13 � Calculate the sum of the 4D terms in (2)’s summation.
14 for TermCnt ← 0 to (1 << (2 ⋅ Ψ.D)) – 1 do � Loop #2.1
15 Index1D ← 0
16 BsplineProd ← 1
17 � For this term, generate unique combination of kd;
18 � calc. B-spline func. product; accum; 1D index to Ψ.φ .
19 for d ← 0 to Ψ.D – 1 do � Loop #2.1.1
20 k[d] ← (TermCnt >> (2d)) & 0x3 � kd in (2)

21 � Accumulate ∏
−

=

1

0

)(
D

d
dk tB

d
 in (2).

22 BsplineProd ← BsplineProd ⋅ CubicBsplines[d][k[d]]
23 � Accum. 1D index to Ψ.φ with (12), assuming R=1.
24 Index1D ← Index1D + Ψ.S[d] ⋅ ((i[d] + 1) + k[d])
25 end
26 � Finish 1D index to Ψ.φ via (13), to account for dim. r.
27 Index1D ← r + Index1D ⋅ Ψ.R
28 � Add current term to the summation.
29 Z[r] ← Z[r] + BsplineProd ⋅ Ψ.φ[Index1D]
30 end
31 end

The algorithm for bsplnd_eval follows directly from (2) and the
mathematical development given here for accessing the D-dimensional
control lattice stored in a one-dimensional array. It may be helpful to
the reader to refer back to equation (2) at this point, as many of the
terms in this equation are referenced in walking through bsplnd_eval.

The first loop of the algorithm calculates data to be used in the second
loop. First, it maps the independent data in X to the control lattice
domain. Using this result, it calculates the D-dimensional, (-1)-based
indices id in array i, where each id is the first of the four control point
indices in dimension d that effect the value of the approximation
function at X. Later, in Loop #2, these participate in generating the
one-dimensional array index to the control lattice in Ψ.φ for accessing
one control point for one term in (2). After calculating in array t the
arguments td to the four B-spline functions, Loop #1 evaluates these
functions with a call to eval_basis_functions. Upon completion of
Loop #1, the array CubicBsplines contains 4D values as ill ustrated in
Figure 7. We conserve execution time by calculating the 4D unique
evaluations of the B-spline functions in the first loop and storing them
in memory. If calculated in Loop #2 on an as needed basis, (2)
requires D4D evaluations of these functions.

d=0 B0(t[0]) B1(t[0]) B2(t[0]) B3(t[0])

d=1 B0(t[1]) B1(t[1]) B2(t[1]) B3(t[1])
� � � �

d=D-1 B0(t[D-1]
)

B1(t[D-1]) B2(t[D-1]) B3(t[D-1])

Figure 7. The populated CubicBsplines array at the conclusion of
Loop #1 in bsplnd_eval.

The second loop accumulates the 4D terms of the summation in (2) for
each dimension of the range independently, accessing the appropriate
4D control point elements in array Ψ.φ. As noted earlier, there is a

separate set of M[0]M[1]…M[D-1] control points in Ψ.φ for each
dimension r of the range. When Loop #2 completes it has stored the R
separate evaluations in output array Z. Nested Loop #2.1 calculates the
summation for dimension r of the range; therefore, each pass through
this loop generates one term in the summation of (2). Key to the
algorithm, nested Loop #2.1.1 generates a unique combination of the
summation variables kd in array k (one per dimension d, where kd = 0,
1, 2, or 3) as a function of the loop iteration variable TermCnt. The
summation variables kd index the B-spline functions in the B-spline

function product ∏
−

=

1

0

)(
D

d
dk tB

d

 of (2), and assist in indexing the one-

dimensional control lattice array Ψ.φ . At the conclusion of

Loop #2.1.1 then, we have calculated ∏
−

=

1

0

)(
D

d
dk tB

d

 for one term in the

summation, and indexed the one-dimensional array Ψ.φ with (12).
This indexing, which occurs in line 24, increments the array element
i[d] by one to convert to zero-based indexing. Then in line 27, the
algorithm completes the indexing of the one-dimensional control
lattice, taking into account the correct dimension of the range with
(13). Finally, in line 29, the algorithm adds the current term to the
accumulating sum in Z for the current dimension of the range.

4.2.2 The BSPLND BA Algorithm: bsplnd_fitUL
In this section we present BSPLND’s multidimensional BA algorithm.
This algorithm and BSPLND’s B-spline refinement algorithm in the
next section are the basic building blocks of BSPLND’s MBA
algorithm, which will complete the algorithm set. The name of the
BSPLND version of the BA algorithm is bsplnd_fitUL. (The UL stands
for “uni-level” as the BA algorithm is used to calculate a control lattice
at one level in the control lattice hierarchy in the MBA algorithm.)

The bsplnd_fitUL algorithm, listed below, accepts scattered data in
parameters x and z, where x is an array of the independent data and z is
an array of the dependent data. Given input parameters D and R for the
domain and range, respectively, and p for the number of scattered data
points, the algorithm assumes that x is a (p × D)-element array and that
z is a (p × R)-element array. Furthermore, it assumes the D
components of each data point’s independent data are stored in
contiguous memory locations, as well as the R components of each
data point’s dependent data. The boundaries of the scattered data
domain Ω are passed to bsplnd_fitUL in parameters xMin and xMax,
D-element arrays, so that it can properly map the independent data to
the control lattice domain defined by input parameter M, also a D-
element array. Input parameter return_dz is a boolean variable which
if true will cause bsplnd_fitUL to calculate the deviation of the
calculated approximation function from the data points, overwriting the
range of the data points in input/output parameter z. This feature will
be useful to the MBA algorithm in calculating the control lattice
hierarchy. The sole output parameter Φ represents the control lattice
object. The algorithm assumes the object contains no meaningful data,
including a zero-element control lattice array in data field Ψ.φ. Thus,
bsplnd_fitUL will determine the control lattice’s size and allocate the
memory for it.

bsplnd_fitUL(p, D, x, R, z{ ↓↑} , return_dz, M, xMin, xMax, Φ{ ↑})
1 � Populate control lattice object
2 bsplnd_new(D, R, M, xMin, xMax, Φ)
3 � Calculate size of control lattice array and allocate size elements
4 � for numerator δ and denominator ω of (7)
5 size ← M[D –1] ⋅ Φ.S[D –1] ⋅ R
6 Alloc(δ, size)

7 Alloc(ω, size)
8 for j ← 0 to size – 1 do � Loop #1
9 δ[j] ← ω[j] ← 0
10 � For each data point, calculate its effect on the 4D control points
11 � nearby (actually, one set of 4D points per dimension of range).
12 for c ← 0 to p – 1 do � Loop #2
13 � Locate data point relative to the D-dim. control lattice by
14 � calcg. the “anchor” index i[d] for each dim. d of the domain;
15 � Evaluate the four B-spline functions for each dimension d.
16 for d ← 0 to D – 1 do � Loop #2.1
17 Xmap ← Φ.slope[d] ⋅ x[d + cD] + Φ.intercept[d]
18 i[d] ← Xmap – 1
19 t[d] ← Xmap – Xmap
20 eval_basis_functions(t[d], CubicBsplines[d])
21 end
22 � Calculate the SS of the 4D B-spline products, WT W in (6).
23 BsplineProdSumSqrs ← 0
24 for TermCnt ← 0 to (1 << (2D)) – 1 do � Loop #2.2
25 BsplineProd ← 1
26 for d ← 0 to D – 1 do � Loop #2.2.1
27 k[d] ← (TermCnt >> (2d)) & 0x3
28 BsplineProd ← BsplineProd ⋅ CubicBsplines[d][k[d]]
29 end
30 BsplineProdSumSqrs ← BsplineProdSumSqrs +BsplineProd ⋅

BsplineProd
31 end
32 � Calculate a control lattice for each dimension r of the range
33 for r ← 0 to R - 1 do � Loop #2.3
34 � Accum. effect of data point on the 4D cntrl. Pts. nearby for
35 � dim. r of range, using the results from Loops #2.1 and #2.2
36 for TermCnt ← 0 to (1 << (2D)) – 1 do � Loop #2.3.1
37 Index1D ← 0
38 BsplineProd ← 1
39 � Gen. 1 B-spline product (wc in (6)); calc. 1D array
40 � index to Φ.φ independent of r (using i from Loop #2.1)
41 for d ← 0 to D – 1 do � Loop #2.3.1.1
42 k[d] ← (TermCnt >> (2d)) & 0x3
43 BsplineProd ← BsplineProd ⋅ CubicBsplines[d][k[d]]
44 Index1D ← Index1D + Φ.S[d] ⋅ ((i[d] + 1) + k[d])
45 end
46 � Complete 1D index to Φ.φ, accounting for dim. r of range
47 Index1D ← r + Index1D ⋅ R
48 � Calculate data point’s effect on one control point with (6)
49 phi_c ← (BsplineProd ⋅ z[r + cR])/BsplineProdSumSqrs
50 � Indexing this one control point, accumulate the
51 � numerator and denominator of (7)
52 δ[Index1D] ← δ[Index1D] + BsplineProd ⋅ BsplineProd ⋅

phi_c
53 ω[Index1D] ← ω[Index1D] + BsplineProd ⋅ BsplineProd
54 end � end for each control point in the vicinity of data point
55 end � end for each dimension r of range
56 end � end for each data point
57 � Calculate the control lattice using (7)
58 for j ← 0 to size – 1 do � Loop #3
59 if ω[j] <> 0 then
60 Φ.φ[j] ← δ[j]/ω [j]
61 else
62 Φ.φ[j] ← 0
63 end
64 � Return the deviation of the approx. function defined by the lattice
65 � from the scattered data points, storing in i/o parameter z.
66 if return_dz then
67 for c ← 0 to p – 1 do � Loop #4

68 bsplnd_eval(Φ, Addr(x[cD]), Z)
69 for r ← 0 to R - 1 do � Loop #4.1
70 z[r + cR] ← z[r + cR] – Z[r]
71 end
72 � Cleanup
73 Free(δ)
74 Free(ω)

A walk through the code of bsplnd_fitUL reveals that the BSPLND
version of the BA algorithm closely follows the logic of the extended
BA algorithm from Section 3.1. This version however, brings the BA
algorithm closer to implementation as it considers the data store for the
D-dimensional control lattice and it accounts for multiple dimensions
in the range of the scattered data.

The algorithm first performs some setup by initializing the control
lattice object in parameter Φ with a call to bsplnd_new. It then
allocates storage, one element per control point, for local arrays δ and
ω for accumulating the numerator and denominator of (7) for each
control point. After this setup, the algorithm calculates the
contribution of each data point to the 4D control points in its vicinity,
storing its contribution in the appropriate 4D elements of δ and ω. This
is actually done for each dimension of the range independently, so that
one data point effects 4DR elements of δ and ω. After each data point
has been visited, the algorithm calculates each control point by
dividing ω into δ element by element for a nonzero denominator or sets
the control point to zero otherwise. A control point in the latter
category does not have any data points in its proximity data set.
Finally, the algorithm calculates the deviation of the calculated
approximation function from the data points, if so requested.

In essence, bsplnd_fitUL calculates R separate control lattices in
parallel, the algorithm viewing each component of the range as a
separate scalar range (R = 1) applied against the full domain of the
data. Control lattice object Φ has been designed to accommodate
them, and the algorithm is coded to store them in Φ separate from each
other.

4.2.3 The BSPLND B-spline Refinement Algorithm:
bsplnd_refine
In this section we present BSPLND’s multidimensional B-spline
refinement algorithm, the second basic building block of BSPLND’s
MBA algorithm. The name of the algorithm, listed below, is
bsplnd_refine. The bsplnd_refine algorithm accepts a control lattice Ψ
that has already been calculated, and calculates a finer lattice defining
an equivalent approximation function, returning it in output parameter
Ψ′.
bsplnd_refine(Ψ, Ψ′{ ↑})
1 D ← Ψ.D
2 R ← Ψ.R
3 � Allocate memory for coarse lattice indices that will contribute
4 � to each control point in the fine lattice and memory for weights.
5 capacity ← 1
6 for d ← 0 to D – 1 do � Loop #1
7 capacity ← capacity ⋅ 3
8 M_tmp[d] ← 2 ⋅ Ψ.M[d] – 3 � refined lattice to be twice as fine
9 end
10 Alloc(CoarseIdxs, capacity)
11 Alloc(Weights, capacity)
12 � Populate refined lattice to be twice as fine as the coarse
13 bsplnd_new(D, R, M_tmp, Ψ.xMin, Ψ.xMax, Ψ′)
14 size ← Ψ′.M[D –1] ⋅ Ψ′.S[D –1] � Assume R=1

15 � Calc. the fine lattice, one control point at a time. Assume R=1.
16 for j ← 0 to size – 1 do � Loop #2
17 � Resolve the 1D index j into its D-dimensional indices
18 rem ← j
19 for d ← D – 1 downto 0 do � Loop #2.1
20 FineIdxs[d] ← (rem div Ψ′.S[d]) – 1 � (-1)-based indexing
21 rem ← rem mod Ψ′.S[d]
22 end
23 � Calculate the 1D array indices of the coarse lattice Ψ and their
24 � weights that contribute to the current control point j in the
25 � refined lattice Ψ′. To do so, use the D-dimensional indices of
26 � control pt. j to locate the related D-dimensional indices in the
27 � coarse lattice and convert these back to a 1D index.
28 CoarseIdxs[0] ← 0
29 Weights[0] ← 1.0
30 NumWgts ← 1
31 for d ← 0 to D – 1 do � Loop #2.2
32 � odd index
33 if FineIdxs[d] & 0x1 <> 0 then begin
34 MinIdx ← (FineIdxs[d] – 1)/2 + 1 � 0-based indexing
35 for i ← NumWgts – 1 downto 0 do � Loop #2.2.1
36 CoarseIdxs[2i + 1] ← CoarseIdxs[i] + (MinIdx + 1) ⋅

Ψ.S[d]
37 CoarseIdxs[2i] ← CoarseIdxs[i] + (MinIdx) ⋅ Ψ.S[d]
38 Weights [2i + 1] ← Weights [i] ⋅ (0.5)
39 Weights [2i] ← Weights [i] ⋅ (0.5)
40 end
41 NumWgts ← NumWgts ⋅ 2
42 end
43 � even index
44 else begin
45 MinIdx ← (FineIdxs[d]/2 – 1) + 1 � 0-based indexing
46 for i ← NumWgts – 1 downto 0 do � Loop #2.2.2
47 CoarseIdxs[3i + 2] ← CoarseIdxs[i] + (MinIdx + 2) ⋅

Ψ.S[d]
48 CoarseIdxs[3i + 1] ← CoarseIdxs[i] + (MinIdx + 1) ⋅

Ψ.S[d]
49 CoarseIdxs[3i] ← CoarseIdxs[i] + (MinIdx) ⋅ Ψ.S[d]
50 Weights[3i + 2] ← Weights[i] ⋅ (0.125)
51 Weights[3i + 1] ← Weights[i] ⋅ (0.75)
52 Weights[3i] ← Weights[i] ⋅ (0.125)
53 end
54 NumWgts ← NumWgts ⋅ 3
55 end
56 end � end for dimension of the domain
57 � Calculate the control points. Account for R>1, so that we are
58 � computing each of the R lattices in Ψ′ in parallel.
59 for r ← 0 to R - 1 do � Loop #2.3
60 Ψ′.φ[r + jR] ← 0
61 for r ← 0 to R - 1 do � Loop #2.4
62 for i ← 0 to NumWgts – 1 do
63 Ψ′.φ[r + jR] ← Ψ′.φ[r + jR] + Ψ.φ[r + CoarseIdxs[i] ⋅ R] ⋅

Weights[i]
64 end

The algorithm first performs some setup by populating Ψ′ with a call to
bsplnd_new. This lattice will have the same values as Ψ for data fields
D, R, xMin, and xMax because the domain and range do not change;
however, it will have different values in fields M, S, slope, and
intercept which are dependent on the size of the lattice. The setup
process also includes memory allocation for the 3D control points in
coarse lattice Ψ that each control point in refined lattice Ψ′ can

potentially relate to (in the 2D case there are nine), and the
corresponding weights that will blend these control points into the one.
Then in line 14, it calculates the number of control points to calculate
in Ψ′, assuming R=1. After the setup, the algorithm fill s these two data
stores CoarseIdxs and Weights for each control point it must calculate
in Ψ′. This occurs in the Loop #2, where the one-dimensional index
for the current control point in Ψ′ is given by loop counter j. In
Loop #2.1, the one dimensional index j is resolved into its (-1)-based
D-dimensional indices and stored in FineIdxs. Recall that this is the
indexing scheme presented by LWS in Figure 1. Then in Loop #2.2,
the two arrays CoarseIdxs and Weights are calculated solely as a
function of these D indices (in FineIdxs).

Finally, in Loops #2.3 and #2.4, the control points in Ψ (CoarseIdxs)
that contribute to the value of control point j in Ψ′ are blended (via
Weights) to give its value. Because the calculation of CoarseIdxs and
Weights is strictly a function of the geometric position of control point
j in the fine lattice, here we can perform this calculation for each
dimension r of the range, independently.

4.2.4 The BSPLND MBA Algorithm: bsplnd_fit
In this section we present BSPLND’s multidimensional MBA
algorithm to complete the algorithm set. It is built from the BA
algorithm bsplnd_fitUL and the B-spline refinement algorithm
bsplnd_refine. It is the predecessor to the BSPLND package’s
bsplnd_fit routine. After presenting this algorithm we’ ll discuss how
to modify it to be tolerance-based, calculating the levels of B-spline
refinement required to achieve a given level of accuracy in the
approximation function.

The bsplnd_fit algorithm follows the logic displayed in Figure 2b, the
LWS diagram for the MBA. Before listing it however, we list three
short algorithms that it calls that correspond to this figure nicely. The
first, bsplnd_finer, calculates the next finer lattice Φk+1 in the control
lattice hierarchy (see Figure 2b) given the current lattice Φk and the
current deviation of the hierarchy from the scattered data. It also
calculates the new deviation from the data of the now extended
hierarchy, to be fed into a subsequent call to bsplnd_finer. The
algorithm bsplnd_add calculates a lattice as the sum of two equally
sized lattices defined on the same domain of the scattered data (see
Figure 2b). Finally, the algorithm bsplnd_delete frees the memory
dynamically allocated in data field φ of the control lattice object,
allowing bsplnd_fit to reuse memory used by previous levels in the
hierarchy as the algorithm progresses.

bsplnd_finer(Φ, p, x, dz{ ↓↑} , Φ_next{ ↑})
1. � Next lattice in hierarchy is to be twice as fine.
2. for d ← 0 to Φ.D – 1 do
3. M_tmp[d] ← 2 ⋅ Φ.M[d] – 3
4. � Calculate next lattice in hierarchy and return deviation in dz
5. bsplnd_fitUL(p, Φ.D, x, Φ.R, dz, TRUE, M_tmp, Φ.xMin, Φ.xMax,

Φ_next)

bsplnd_add(Φ1, Φ2, Φ_sum{ ↑})
1. � Populate sum.
2. bsplnd_new(Φ1.D, Φ1.R, Φ1.M, Φ1.xMin, Φ1.xMax, Φ_sum)
3. � Sum corresponding control points.
4. size ← Φ1.M[Φ1.D –1] ⋅ Φ1.S[Φ1.D –1] ⋅ Φ1.R
5. for i ← 0 to size – 1 do
6. Φ_sum.φ[i] ← Φ1.φ[i] + Φ2.φ[i]

bsplnd_delete(Φ{ ↓↑})
1. if Φ.φ <> NIL then
2. Free(Φ.φ)

The listing for bsplnd_fit follows. Notice that the parameter li st
matches the BA algorithm bsplnd_fitUL, except that the dependent
data is strictly an input parameter (z), and the addition of parameter h,
the number of levels of B-spline refinement. Indeed, when h = 0
bsplnd_fit reduces to bsplnd_fitUL. Since bsplnd_fit is a public
routine in implementation (as opposed to bsplnd_fitUL) we don’ t edit
the user’s data. Note that in returned lattice Ψ, data field M is not the
same as input parameter M. Each level in the hierarchy above level
zero doubles the lattice size in the call to bsplnd_finer. The algorithm
directly maps to Figure 2b.

bsplnd_fit(p, D, x, R, z, M, xMin, xMax, h, Ψ{ ↑})
1 � current lattice in hierarchy: Φ
2 � current unrefined lattice: Ψ
3 � current refined lattice: Ψ′
4 Ψ.φ ← NIL � initialize; important for memory reuse
5 � Storage for the delta of the lattice from the scattered data points.
6 � Start with the data itself.
7 Alloc(dz, pR)
8 for c ← 0 to p – 1 do � Loop #1
9 for r ← 0 to R - 1 do � Loop #1.1
10 dz[r + cR] ← z[r + cR]
11 � Calculate one control lattice Ψ = to the control lattice hierarchy
12 for k ← 0 to h do � Loop #2
13 AtFirstLevel ← (k = 0)
14 if Ψ.φ <> NIL then
15 bsplnd_delete(Ψ) � memory reuse
16 � Ψ = Φ + Ψ′ (Figure 7b)
17 if AtFirstLevel then
18 bsplnd_fitUL(p, D, x, R, dz, TRUE, M, xMin, xMax, Ψ)
19 else
20 bsplnd_add(Φ, Ψ′, Ψ)
21 AtLastLevel ← (k = h)
22 if not AtLastLevel then
23 bsplnd_delete(Ψ′) � memory reuse
24 � Refine Ψ into Ψ′ (Figure 2b)
25 bsplnd_refine(Ψ, Ψ′)
26 � Next finer Φ in hierarchy from current deviation (Figure 2b)
27 if AtFirstLevel then
28 bsplnd_finer(Ψ, p, x, dz, Φ)
29 else
30 bsplnd_finer(Φ, p, x, dz, Φ)
31 end

32 end
33 Ψ.h ← h � copy levels of refinement into lattice object
34 bsplnd_delete(Ψ′) � cleanup
35 bsplnd_delete(Φ)
36 Free(dz)

4.2.4.1 The BSPLND Tolerance-Based MBA Algorithm
The bsplnd_fit algorithm can be modified to accept a tolerance or
measure of accuracy the function must achieve in its approximation of
the scattered data. After calculating the current value of Ψ in line 18
(or 20), we can modify bsplnd_fit to measure the approximation error
of Ψ and exit the loop if it falls below the user-specified tolerance (a
new parameter). Of course, we also modify Loop #2 to be condition-
based on the error meeting the tolerance rather than iteration-based on
input h. Given p instances of scattered dependent data z = { (z0,c, z1,c,
…, zR-1,c)} , we denote the deviation of Ψ from z as ∆z = { (∆z0,c, ∆z1,c,
…, ∆zR-1,c)} . We calculate the root mean square error with

p

z

e

R

r

p

c
cr∑∑

−

=

−

=

∆
=

1

0

1

0

2
,

, (15)

where as before p is the number of scattered data points.

Note that if the scattered data is not truly functional in nature, then the
tolerance specified by the user may never be reached. The tolerance-
based BSPLND MBA algorithm, bsplnd_fitToTol, requires a maximum
number of levels of B-spline refinement to use (a maximum value for
h) as input so that it can halt i f the calculated function is not meeting
the tolerance.

5. BSPLND Implementation
The BSPLND package has been written in the C programming
language. The library consists of four primary routines: bsplnd_fit,
bsplnd_fitToTol, bsplnd_eval, and bsplnd_delete. In addition to these,
the library comes with three additional routines that are used by the
MBA implementers bsplnd_fit and bsplnd_fitToTol to perform their
work: bsplnd_finer, bsplnd_refine, and bsplnd_add. They are included
in the library for the advanced user who would like to write routines
similar to bsplnd_fit and bsplnd_fitToTol. A user’s guide to the library
is in available in the form of a manual page. The user’s guide includes
the function prototype and gives a detailed specification of each
routine. It also lists all error conditions reported by the library. The
BSPLND algorithms mentioned earlier that are not in the public
interface to this library have a corresponding private routine in the
library (e.g. bsplndfit_UL).

5.1 Application
BSPLND is a general-purpose program that works with data having an
arbitrary number of dimensions for both its domain and range.
Therefore it can be applied in a variety of applications, such as

• wind velocity in a three-dimensional volume
• altitudes on a map
• a compressed multicolor image
• fluid flow in a river
• tissue density in a CAT or MRI scan
• temperature in a furnace

5.2 Future Work
The implementation of one additional algorithm in [1], the Adaptive
BA algorithm would be a valuable addition to BSPLND. The
algorithm ensures interpolation of the data by using the MBA
algorithm to a number of levels in the hierarchy such that each control
point has a single point in its proximity data set. This is similar to the
BSPLND routine bsplnd_fitToTol. However, because a single pair of
close data points may require Φh to become very dense even though all
other data points are sparsely distributed, the adaptive approach is to
store only those control points that lie in the 4 × 4 neighborhood of
each data point (in the 2D case), thereby conserving memory. Another
useful addition to the library would be an integration routine that
would accept the approximation function defined by a control lattice
Φ, along with an interval that is some subset of the domain, and
integrate the function over the specified interval. For example,
integrating a density function over a three-dimensional volume would
give the total mass of the substance in that volume.

6. ACKNOWLEDGMENTS
Dr. Robert Lewis served as the primary author’s advisor and the chair
of his committee, in completion of his master’s degree work at
Washington State University. He would like to thank Dr. Lewis for his
help on all aspects of this project, including his assistance in the
development of the BSPLND algorithms, his development of an
application to display output from BSPLND in Geomview [4], and his
review of the project paper. His colleague Alain Fournier provided the
B-spline refinement algorithm in multiple dimensions implemented in
BSPLND.

7. REFERENCES
[1] Lee, Wolberg, Shin, “Scattered Data Interpolation with Multil evel

B-Splines” , IEEE Transactions on Visualization and Computer
Graphics, Vol. 3, No. 3, July-September 1997

[2] Cormen, et. al., “ Introduction to Algorithms” , The MIT
Press, Cambridge, Massachusetts, 1990.

[3] Wolfram, S., “Mathematica: A System for Doing
Mathematics by Computer” , 2nd edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1993.

[4] Philli ps, et. al., “Geomview Manual” , Software
Development Group, The Geometry Center, University of
Minnesota.

