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Abstract

Recently, there has been considerable interest in the representation of radiance in terms of wavelet basis functions.
We will present a coordinate system called Nusselt coordinates which, when combined with wavelets, considerably
simplifies computation of radiative transport and surface interaction. It also provides straightforward computation

of the physical quantities involved.

We show how to construct a discrete representation of the radiative transport operator 7" involving inner products
of smoothing functions, discuss the possible numerical integration techniques, and present an application. We
also show how surface interaction can be represented as a kind of matrix product of the wavelet projections of an
incident radiance and a bidirectional reflectance distribution function (BRDF).

1. Introduction

In computer graphics, we use illumination, the study of how
light interacts with matter to produce visible scenes, to pro-
duce “realistic” images. Illumination is typically decom-
posed into two sub-areas: local and global.

Local illumination describes the interaction of light with a
single, small volume or surface element with given incident
and viewing directions. Figure 1 shows the typical geometry
and nomenclature for local illumination studies.

Global illumination describes how light is distributed in
a scene: a collection of objects, including light sources,
immersed in a given medium. Global illumination solu-
tions must consider multiple reflections. Global illumina-
tion solutions are built on top of local illumination solutions.
Fournier? describes their interrelation further.

In this paper, we will advance a new approach to an illumi-
nation solution that is intermediate between local and global
illumination. Using wavelets, we are able to treat the inter-
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action between two surfaces and the interaction of a surface
with a radiation field in a source-to-destination model that
applies to whole surfaces, not just small elements. We have
used this work as the basis of a fully global solution (see
Lewis16).

Wavelets are relatively recent additions to the rendering
toolkit. They were first used by Gortler et al.l1 to solve
the radiosity equations. Schroder et al.’® and Christensen
et al.2 applied them to non-diffuse situations. Lalonde and
Fournier'# applied them to the representation of reflectance
data. What we present here may be considered a further de-
velopment of work done by these researchers.

2. Radiative Transfer and Surface Interaction Theory

Let us first discuss some of the basics of how light is rep-
resented. The fundamental quantity is radiance, the amount
of power passing in a given direction through a given sur-
face per unit area (perpendicular to the direction of travel)
per unit solid angle. In this report, we will take radiance
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Figure 1: Local lllumination Geometry

to be monochromatic and assume we can construct a poly-
chromatic images by combining independently computed
monochromatic images. We also ignore polarization.

Radiance at a point P in a direction S is usually repre-
sented by a function L(P, S).

Radiance’s most useful property is its invariance: In a
non-participating medium, the radiance given off at a point
Po on a surface in a direction S is constant until reaching an-
other surface. We can express this as the action of a transport
operator 7

L(P,S)=TL=L(Po(P,S),S)
This principle underlies raytracing.

We take the fundamental equation describing surface in-
teraction to be (cf. Glassner?, p. 879 or Cohen and Wallace?,
p. 39):

L(V) = Le(V)
/QR f(ST,V)Li(S) ‘N-S+‘ doy

o

where L is the total radiance given off of a surface with nor-
mal N, Le is the surface emissivity, L is the incident radi-
ance, QR is the reflection hemisphere (contains N, the “view-
ing” direction V, and the “positive source” direction S*),
Q) is the transmission hemisphere (opposite QR, containing
the “negative source” direction S™), fr is the bidirectional

+
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Figure 2: Nusselt Geometry. “UDC” indicates the unit di-
rectional circle.

reflectance distribution function (BRDF), and f; is the bidi-
rectional transmittance distribution function (BTDF). Note
that, since it symbolically factors out of (1), we ignore the
spatial variation of the radiances and distribution functions.

We represent this combined reflection and transmission
surface interaction by the integral operator S.

Lr = Le+SL;

Note that we treat the emissivity term separately.

3. Radiance in Nusselt Coordinates

If we confine our discussion to surfaces, we can assume a
planar (possibly local) parameterization for P of (u,v). S is
then typically represented in polar and azimuthal coordinates
(8, ) according to the local frame of reference.

Consider the x, y, and z direction cosines corresponding
to a direction (8, @):

Px =SinB cos@ py =sinBsing@ pz=cosO 2)

We take (px, py) to be an alternative parameterization of di-
rection.

It is convenient in what follows for all variables to vary
between the extrema of 0 and 1, so let us make a further
change of the directional variables from (px, py) to (K, A):

+1 +1

K

Figure 2 shows the relation between (6,¢) and (k,A)
graphically. It also shows the unit directional circle (here-
after, UDC), defined by pg + p3 = 1.

To convert integration over (8, @) to integration over (K, A)
we account for the change of integration variables by multi-
plying by the determinant of the Jacobian, which is:

89| 4
‘ 3k, \) @

" cos@sind
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so, assuming L; is zero for directions outside the UDC, (1)
becomes

1 ,1
L = Le+4/0/0 [#(s*,V)Li(s™)
+ R(ST,V)Li(ST)] diidN, (5

That the integral no longer contains trigonometric func-
tions should come as no surprise. We have simply used a
differential form of the “Nusselt analog” (Nusselt!8, but see
Cohen and Wallace#, p. 80 for a description in English): the
amount of power per unit area transferred from a differential
solid angle day is proportional to dk; dA;, the area of the sur-
face that the projection of dw; on a unit sphere subtends. For
this reason, we refer to K and A as “Nusselt coordinates”.

We also note that, since g -+ pg + pZ = 1 and since each
vector is defined only over a hemisphere, not the whole di-
rectional sphere, we can express St, 57, and V all unam-
biguously in terms of their respective incident and reflected
K’s and A’s. Simply put, it is always clear which sign to at-
tach to the square root.

Other ways to parameterize the directional component of
a radiance distribution are possible. Light fields (as in Levoy
and Hanrahan®®) and lumigraphs (as in Gortler et al.10),
are very promising approaches for display purposes. Chris-
tensen et al.® use a combination of a gnomonic projection
and “stretch” to map directions to the unit square. None of
these approaches, however, leads to the simplification of sur-
face interaction that (5) demonstrates.

4. Radiance Representation

What are the characteristics of a four-dimensional radiance
distribution L(X,y,k,A)? The easiest way to visualize this
is as “light through a window” where the position of an
observer on a window is (x,y) and he or she casts a ray
in direction (k,A). For a fixed direction, the resulting two-
dimensional projection is a parallel projection. (The special
case (K,A\) = (%,%) is an orthographic projection.) For a
fixed position, the distribution in (k,A) would be a “fisheye”
view. In both cases, the result is an image, so we can deal
with those radiance distributions as we deal with images.

Radiance at a point on a surface is a potentially discontin-
uous, generally nonanalytic function. We can approximate it
with a finite element expansion with N degrees of freedom:

I\
LY, kM) = % biBj(X,,K,A)
=1

Choices for the basis functions Bj include box discretiza-
tion (a la Fournier et al.’s® FIAT), Fourier, discrete cosine,
orthogonal polynomials, and wavelets. We are particularly
interested in wavelets because, unlike the other bases listed,
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their basis functions are of limited support and they can rep-
resent discontinuities compactly. They are also capable of
considerable compression.

5. Multidimensional Wavelets

In this section, we will describe multidimensional wavelets
with the intention of applying them to radiative transport and
surface interaction.

For D-dimensional coordinates

g=(d1,92,.--,9p),

we can define a set of multidimensional wavelet basis func-
tions indexed by a standard multiresolution index

i=oh i mbm) 1 m) (6)

where vj, which we call the “basis selector”, determines
the combination of one dimensional smoothing and wavelet
functions:

Bi(a) =
A (00) 9 (92)--- B (00) V=
Wi (G0 (G2) - @ i (0D) - VI =1
B (W)W} (%) - @ (GD) V) = %
Wi (W)W} (G2) Wy i (00) VI =20 —1

We refer to the special case of vl =0 as the “pure smooth-
ing” component, as the corresponding basis function is made
up of only smoothing functions.

We define the inner product of two functions f and g
with respect to x. (Using x as a subscript is non-traditional,
but will become useful when we speak of multidimensional
wavelets.)

(o= [ feoamax

If we have j as in (6) and define k as
k: (Vk7I]|f7 mE’I|2(7 m|§7"'7llls7m||(3) (8)

then
N D
<Bj | Bk>q =ik J:Ilélélséménfg

I§j is identical to B; as defined in (7), but with the primal
wavelets and smoothing functions replaced by their duals.

This is the “standard” multidimensional Cartesian product
basis. It is also possible to constrain I{ = 15 =... =15 =1J,
resulting in the so-called “nonstandard” basis. In general
multidimensional (especially image-oriented) applications,
as cited in Daubechies® and in Schréder et al.19, the nonstan-
dard bases are preferred because of their “square” support.
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In this paper, we are considering 4-dimensional, nonstan-
dard basis functions, so let us enumerate the coordinates
with the 4-vector

q = (U,V’K,)\)

and the basis functions with a nonstandard multiresolution
index

j:(vvl7mU7mV7mK1m)\)' (9)
Using the standard wavelet recurrence relations (see
Daubechies®) and (7), all the basis functions at level | of the

pyramid can be written in terms of the v = 0 basis functions
at level | +1:

Bum(d) = (10)
3 m Pt Porg Py Pt Bo 4 2y2mmry (@) V=10
V=

3’ Gy, N, g et Bt 1) 2mem (4)
4 T Mg Ot ey ey Bogiayamamiy (@) V=2

3 m O, O, Oy It Bogi2y2msmiy (@) V=15
where m’ = (m{;, my, m,m;} ).

So for any function f,
(F [ Bumb = 3 Worr (F I1Bogsyamsan) ),

where Wy is (4 times) a product of smoothing and wavelet
coefficients.

6. Wavelet Radiance Properties

Apart from compression, representing radiance in terms of
a wavelet basis with direction expressed in Nusselt coordi-
nates makes several calculations of relevance to illumina-
tion computation easier. Notice that these all act directly on
wavelet coefficients themselves and do not require an inverse
wavelet transform.

6.1. Irradiance

Irradiance is computed as

E0y) = [, Li6y,0,0) IN-| dox.

N

Again making use of (4), we have

1.1
E(X,Y)=4/ / Li (%, Y, K, A) dKj dA;.
o Jo

The limits of both integrations are 0 and 1, but if L; is zero
outside the UDC (see Figure 2), we can safely extend the
integration limits to —oo and +oo.

This allows us to say that if

Li(xayaKa)\) = zbj BJ (X7yaKa)\) (ll)
J

then
E(x,y) = 42 b; (Bj | 1>K,)\ (12)
]

is the wavelet representation of the irradiance.

The inner products on the right hand side are usually easy
to compute in tabular form, if not analytically, making par-
ticular use of the fact that [*°y(x)dx = 0 to eliminate
many coefficients.

6.2. Power Flux

The power flux passing through an area A is defined as

o= L,

i(%,y,8,¢) IN-S| duydA

~ [E®xy)da (13)
A
If we have a spatial parameterization (u,v) <> (X,y) that
maps the unit square to A and back, then we have
b= / / y(u,v)) ‘ y; dudv.

If, as above, we take E(x,y) = 0 for (x,y) outside of A and if
we extend (11) to include this parameterization:

XY7K)\ zb]Bj y)aKz)\)z

then we can incorporate (12) to get the wavelet representa-
tion of flux:

¢:4szj<Bj|‘(‘M‘>q. (14)

6.3. Transport

We represent radiance as

= Z bk Bk () (15)

where
bk = (L | Bk),, (16)
and k is defined as in (8).

Radiance travels from a source point gs to a destination
point qq. If we have a mapping of gs — gq, we can compute

d(da) = Z_bﬁskmd)

where

bf = (Ls(as()) | Bi)q,
> bTik, 17)
]

(© The Eurographics Association and Blackwell Publishers 2002.



Lewis and Fournier / Wavelet Radiative Transfer

j is defined as in (6), and we define geometry-dependent
“transport coefficients”

Tik = (Bj(as(+)) | Bi)g, - (18)

Using the multidimensional refinement shown in (10),
given To;m;)k on level Ij, we can compute all coefficients
on the coarser level above it in the pyramid:

Twit—nmpk = > Wo;m Tor; 2m;+m )k (19)
ml
and given Tj(q|,m,) On level I, we can compute

z Wy, m# Tj o (2metmeryy — (20)

(Vk(lk 1 mk

[ R K ok ok ok
where m;j = (m},m{, mg,m}) and my = (mg, m§, mg, my).

This means that we can compute all transport coefficients
strictly in terms of pure smoothing components:

Tik =3 > WoymWo,m Tiol; (2m; +m)) O (2mitmr)) - (21)
ml mII
6.4. Surface Interaction

Using (7), let us define a mixed primal-dual, four-
dimensional, nonstandard wavelet basis:

F(Ks,As,Kr,Ar) =

<~mm'K(Ks)@j@(As)%jn&(Kr)fﬂjn&(Ar) vi=o0
L.plim‘;((KS)(HJ'rH)\()‘S)(HjmJ;(Kr)(p“m;\()"’) vi=1
(Nﬂjmg((Ks)llhjm’)\(As)(ﬂj@(Kr)(ﬂjn&(Ar) vi=2

ll’lirriK(KS)lI’|iniA()\S)lU|jmi((Kr)%mi()\r) vi=15
where
i = (vj,1j,mi, mj,md,m) )

S0 Fj(Ks,As,Kr,Ar) is Bj(Ks,As,Kr,Ar) with dual scaling
functions and wavelets substituted for the primal scaling
functions and wavelets in the incident directional compo-
nents only.

If we then represent the BRDF in Nusselt coordinates with
this basis:

f (KS,)\S,KT, Zf F' KS,)\S,Kr,)\ )

and
I—i (X7 y7 Ks, )\3) = Z bk Bk(X, y7 Ks, )\S)

where
k ok Kk Kk
k = (Vk7 Ikv mU7 va va m)\)

then, applying (5) and again requiring either f, or L; (or
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both) to vanish outside the UDC (thus allowing us to extend
our integration to (—oo..00)), the reflected radiance is

4j/ ]f fr(ST,V

42 Z fj bk F] | Bk Ks,)\s (22)
J

L

Li(ST)dksdAs

We seek a wavelet representation of the post-interaction
radiance:

= z b;]Bn(X, Y, Kr, )\I”)
n
Again using the basis representation of the reflected radiance
as in (15) and (16), it follows that
[ - <Lr | §n>x,y,K,,)\,
So, substituting (22), we find

bl — 42; fjrbk <<F] | Bk>KS,)\5 | én>><y|< A @3)
: LYsKr A

Let us now simplify notation. We can rewrite Fj and By

compactly by defining a function Eﬁn(x) that takes on the
value of the smoothing function or the wavelet depending
on a single binary value (3:

_J om(x) B=
o ={ $ne 5

and similarly for a E with @ and @ in place of g and Y, re-
spectively.

We also take indexable (from 0 to 3) representations of
the arguments to i and By, respectively

p= (K57 )\51 Kra)\r)
and
q= (U,V, Ks, )\S)

If we now adopt the notation where iqy refers to the ath

bit of the binary form of i (i.e. i2~® mod 2), we can express
the innermost inner product of (23) as

(7 180, = @
IR ety

I_l E“(G? (pG)E|k(,$% (ch):| dksdAs

and removing factors that do not depend on the variables of
integration from the integral, we have

<F | Bk>Ks,)\s =
<z|,<,$b | E.WQ < "o | z.“kﬁg%s
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Vo) Vi) Vizy Viay
E|kmlé(x) Elkm‘{(y) Elimjz(Kr)Elirr%()\r) (25)
If we now define a multiresolution delta tensor

sl vk
ot = (& 1810 )
we can rewrite (25) as
<FJ | Bk>KS,)\S = (26)

K K i i
02 A13 ¢V \Y A A
Bk B3k & 00 S (¥) Elj(;);z(Kr) El,-(;);s (Ar)
and we can continue to apply the A symbol to simplify the
whole nested inner product in (23)

(R8O, 1Bn) =

XYk
02 713 A00 p11 A22 £33
DO Ak Din Dikn Ajn Ajn - (27)

The A’s are very much dependent upon our choice of
wavelet, so we will defer discussing their computation to
Section 7.

We can do the same thing with a BTDF and so represent
general surface interactions: reflection, refraction, and trans-
mission.

7. Implementation

In this section, we discuss the implementation of the WRT
algorithm (hereafter, “WRT”). We apply some of the con-
cepts of Section 6 to a classic illumination problem: the
transport of radiation between two arbitrarily-oriented poly-
gons.

7.1. Major Implementation Details

In this subsection, we will discuss design decisions that are
of general concern to anyone attempting to build a WRT sys-
tem.

7.1.1. Representing Transport Geometry

To establish the gs <> qq mapping we need in order to trans-
port radiance from source to destination, we must deal with
several coordinate systems, as shown in Figure 3: source
parametric, source object, world, destination object, and des-
tination parametric. Obviously, source object to destination
object is best done with a conventional affine transform (with
projection), but there are several choices possible for the
parametric <> object mappings: rectilinear, perspective, and
bilinear. All of these are local to the sending or receiving
surface.

7.1.1.1. Rectilinear This is the simplest possible mapping:

x| _ |W 0 u
HEkEIIN
W and H are the dimensions of a bounding rectangle. If
the object is a rectangle, an obvious strategy is to choose
coordinates in which W is its width and H is its height. This
will ensure that the (inverse) transformed object completely
fills the unit square. Otherwise, or in the more general case of
an arbitrarily-sided polygon, when computing Tj we must

clip the (square) support of B; (source) or By (destination)
against the polygon when integrating.

A major advantage of the rectilinear mapping is the ease
of computation of the Jacobian determinant:

o(x,y)
o(u,v)
which makes the power flux computation shown in Equa-
tion (14) very easy:
¢:4WHJij (Bj | 1>q.

=WH

especially in the case of Haar wavelets:
@ = 4W Hby.

7.1.1.2. Perspective This mapping allows us to represent
the more general quadrilaterals without the need to clip:

XW A11 A12 A13 u
W =| Az An Az v
w A1 Az 1 1

where the Ajj’s are easily-determined functions of the
quadrilateral vertices.

A straight line in perspective parametric coordinates au +
bv 4 ¢ = 0 transforms to a straight line a’x + b’y +c’ in ob-
ject coordinates. This means that a quadrilateral in object
coordinates will map to a quadrilateral in parametric coor-
dinates and vice versa. This has favourable implications for
transport coefficient computation that we will discuss below.

One drawback of a perspective mapping is that if the
quadrilateral approaches degeneracy (a triangle, for in-
stance), the appearance of a uniform grid in parametric space
becomes increasingly nonuniform.

The power flux computation of Equation (14) is not as
easy as in the rectilinear case, but may still be analytically
done for basis functions Bj with closed-form representa-
tions, such as splines.

7.1.1.3. Bilinear As with 2-D perspective, this mapping
also allows us to represent quadrilaterals without clipping.
If the quadrilateral is defined by four points {po, p1, P2, P3}
(in CCW order), the customary bilinear mapping applies:

MR R

(© The Eurographics Association and Blackwell Publishers 2002.
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source destination
1 Ys Ya 1
Vg D @ ‘ \
0 , 0
0O u 1 X X4 0 y 1
parametric object object parametric
G world %

Figure 3: Coordinate Systems. The gray quadrilaterals represent the support of source and destination bases.

Unlike the perspective case, we can treat triangles as de-
generate quadrilaterals, albeit with some irregular object
space meshing. However, this mapping is not without its
own drawbacks. While the parametric-to-object mapping is
straightforward, the inverse object-to-parametric mapping is,
in fact, double valued: a given (x,y) usually has two solu-
tions (u,v), one of them inside the unit rectangle, one out-
side. In order to distinguish the two cases, we must clip in
object space before inversion.

A more serious drawback is that straight lines are not, in
general, preserved. The inverse projection of a straight line
ax + by +c¢ = 0 into parametric space is, in general, a hy-
perbola. This also has implications for transport coefficient
computation: it complicates determination of the limits of
integration.

Again, while the still more complicated Jacobian of
this transform makes the power flux computation of Equa-
tion (14) more difficult, it may still be done for choices of B;
with closed-form representations, such as splines.

7.1.2. Choice of Wavelet

Except where noted, our discussions in Section 6 did not
depend on any particular choice of wavelet. For implemen-
tation purposes, we have to choose one. There are several
good reasons for choosing Haar wavelets.

The fast wavelet transform can be performed in O(N) time
(see Beylkin /em et al.1), but if we allow for a varying dimen-
sionality D and wavelet basis, it is easy to see from Equa-
tion (10) that the complexity is actually O(WhDN) where W,
is the (varying) maximum width of the {h;} and {ﬁj} (and,
consequently, {g;} and {§;}) coefficient sets.

For this reason, as the dimensionality increases, the
rapidly-increasing operation count makes narrower filters
more and more desirable, even though wider filters gener-
ally have better approximation properties. Since Haar is the

(© The Eurographics Association and Blackwell Publishers 2002.

narrowest possible wavelet filter (W, = 2), it seems a wise
strategy to make any multidimensional efforts first with Haar
and move to wider bases later if Haar proves unsatisfactory.

An additional advantage of Haar wavelets over the oth-
ers is the simplification of the calculation of the transport
coefficients, irradiance and power flux. As Equations (19)
and (20) have shown, these coefficients can be computed
entirely in terms of pure smoothing calculations. A four-
dimensional Haar pure smoothing basis is a function that is
constant (= 4') within a hypercube and zero outside of it.
The resulting transport coefficients are volume integrals of
the overlap between such a hypercube in destination para-
metric space and the object which is a projection of a hyper-
cube in source parametric space into the destination space.
(This may not be such a great simplification. After all, any
arbitrarily complex 3-dimensional integral may be trivially
turned into a 4-dimensional volume integral!)

The overwhelming advantage of choosing Haar wavelets,
however, is the great simplification they make in computing
surface interaction. Because the Haar functions are piece-
wise constant, the individual integrals in the Aﬁf’s used in
(27) become trivial. Upon incorporating these (conceptu-
ally) as sums of weighted Kronecker delta-functions into the
evaluation of (22), it is possible to derive a very efficient al-
gorithm to compute the surface interaction coefficients. See
Lewis16 for additional details.

7.1.3. Problems with Transport Coefficient
Computation

As the preceding subsection suggests, using Haar wavelets
turns transport coefficient computation into volume integral
evaluation. There are two practical problems that complicate
the computation of that volume.

7.1.3.1. Some Source Points Do Not Project Into Destina-
tion Space The source hypercube defines a range of posi-
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tional and directional coordinates gs. Not all of these coordi-
nates may map to points in the destination plane, much less
the destination quadrilateral. This complicates any attempt
at direct evaluation of the transport integrals.

7.1.3.2. The Projected Hypercube Has Curved Sides
Even if all points in the source hypercube map to the desti-
nation plane, the nature of the resulting volume is not trivial.
Needless to say, the projection of a source parametric hyper-
cube into destination parametric space is not a hypercube.
If, however, we could choose coordinate systems such that
the source hypercube mapped to a polytope in destination
space, we could take advantage of computational geometric
techniques to first clip it against the destination hypercube
and then compute the volume of the resulting polytope. Un-
fortunately, this is not possible because the source hypercube
does not project to a polytope.

Consider the coordinate systems described in Sec-
tion 7.1.1. Even if we choose rectilinear parametric <> object
mappings, the source object to destination object transform
involves a projection. Hence, at best, the gs — qq mapping
has a nonlinear dependence on the directional components.

As a result, the projection of the source hypercube into
destination parametric space has curved sides. Furthermore,
the curvature is such that we cannot guarantee that the con-
vex hull of the polytope formed by projecting the 16 corners
of the source hypercube into destination space contains the
hypervolume. We have not fully pursued the possibility of
an approximation of the projected hypercube by its convex
hull here.

7.1.4. Integration Techniques

For these reasons, we must resort to multidimensional nu-
merical integration schemes. Before considering candidate
techniques, we first make an observation about the dimen-
sionality required for numerical integration.

7.1.4.1. Reducing the Dimensionality As Equation (18)
indicates, the computation of transport coefficients is in-
trinsically four-dimensional: two directional integrals and
two positional integrals. If we take the two outermost inte-
grals over direction and restrict our discussion to pure Haar
smoothing components (vj = v = 0, as Equation (21) per-
mits), it is then evident that

T :4'i+'k//& Gj (Ka» M) Ajic(Ka, Aa) kg dAg

Sy is the (square) directional support of By. Gj(Kd,Aq) is a
geometric function which is equal to one if a ray from the
destination plane projected backwards along the (Kq,Aq) di-
rection reaches the source plane and falls within the direc-
tional support of B;. Otherwisg, it is zero. Ajk(Kg,Aq) is the
area of the intersection of the spatial support of By in des-
tination parametric space with the projection (in the Kg,Ag

direction) to destination parametric space of the spatial sup-
port of B;.

\We are now in a position to evaluate the coordinate map-
pings given in Section 7.1.1 to see which of them makes
Ajk(Kd,Aq) easy to compute. All the mappings transform
lines of constant u or v to lines in object space, so any of
them would work for the source parametric to source object
mapping. Only rectilinear and perspective mappings, how-
ever, transform arbitrary lines in object space to lines in para-
metric space. If we choose either of them for our destination
object to destination parametric mappings, computation of
Ajk(Kd,Aq) amounts to clipping the projected quadrilateral
to the spatial support of By using a conventional polygon
clipping algorithm and computing the resulting area. This
allows us to reduce the dimensionality that we need to inte-
grate numerically from four to two.

7.1.4.2. Numerical Quadrature Regardless of the num-
ber of dimensions, numerical integration techniques are all
based on some form of quadrature:

/ f(x)dx = ’\;pri f(x)

where Nemp is the number of samples. Techniques differ
principally in their choices of weights w; and sample points
xij. Zwillinger?! provides an extensive survey of these. The
ones we have chosen to evaluate are:

e trapezoidal: a regular grid approximating f linearly in
each dimension

e Romberg: a multilevel (Richardson) extrapolation (in
terms of the grid spacing) of trapezoidal results

e Monte Carlo: xi’s chosen from a (possibly stratified)
pseudo-random sequence (Glassner?, p. 310 is a good
overview of pseudo- and quasi-random integration meth-
ods in image synthesis.)

e Halton: similar to Monte Carlo, but using quasi-random
numbers generated according to number theoretical con-
siderations

e Hammersley: an alternative quasi-random method

While pseudo-random and quasi-random techniques are
generally preferred for multidimensional quadrature, we
include trapezoidal and Romberg techniques to explore
the two-dimensional case, where Monte Carlo has error
of order O(N;n},{z) (This is true regardless of the di-
mensionality of the problem and is one of the appeals
of Monte Carlo integration.) and the trapezoidal rule has
error of order O(N;m,{z). We must be careful to use
these error estimates cautiously, however, since our inte-
grand, G(Kg,Ad) Ajk (Kd, Ag) contains discontinuities that er-
ror analyses do not account for.

7.1.4.3. Comparison To evaluate the accuracies of the var-
ious methods, we have applied them to a test problem: com-
puting the set of all Tjy for a given j and geometry. To an-
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Figure 4: Relative Euclidean Distance vs. Time for Different Integration Techniques and Numbers of Samples

alyze the results we can treat this set as a vector in a K-
dimensional space, where K = 16'max+1 ang Imax 1S the max-
imum level we have coefficients for. (l.e., we have K values
of k.)

To compare results against a reference, we create a refer-
ence vector ij‘f using an extremely long (25 CPU-minutes)
integration time and then adopt two metrics. The first, which
we call the relative Euclidean distance (hereafter, RED) is
the Euclidean distance (L2 norm) of Tjy from ij‘f divided by

the magnitude of Tj¢':

Tk (Tjk - -I—jli(8f>2
2 (T)’

Figure 4 shows how the RED varies with integration time
and Nsamp for the various techniques. Rather than Nsamp, time
is the appropriate abscissa here. Since the time required
to evaluate the integrand varies with dimensionality, fewer
samples do not necessarily imply faster computation. Note
that we allow the degree of extrapolation for Romberg inte-
gration to vary from linear to quadratic to cubic. The times

(© The Eurographics Association and Blackwell Publishers 2002.

shown are for an IBM Model RS/6000 POWERserver 560
workstation.

The second metric, which we call relative maximum de-
parture (hereafter, RMD), is more conservative. It is the
maximum absolute difference between T, and 'I'J-'kEf (Loo

norm) divided by the maximum absolute value of ij‘:

maxy ‘Tjk—ij‘\

maxy ‘Tj'lff )

Figure 5 shows how the RMD varies for the same param-
eters as Figure 4.

From these plots, we can draw several conclusions:

e The two figures are qualitatively similar: a method that
does well by one metric generally does well by the other.
This gives us some confidence that these metrics are valid.

e Stratification improves Monte Carlo results. (This comes
as no surprise.)

e The time required for Monte Carlo methods being linear
in Nsamp, they all approximate the expected O(N;n%z) be-
haviour.
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e For a given integration time, the 4D trapezoidal method
does generally worse than the other methods.

e Increasing the degree of extrapolation for Romberg (2D)
integration generally makes matters worse. This is pre-
sumably a result of the discontinuities in the integrand we
discussed above.

e Quasi-random methods give similar and comparatively
good results. This reinforces the findings of Keller13,

The most surprising observation, however, is how well the
straightforward 2D trapezoidal rule does. For the RED met-
ric, it is comparable with the best of the other methods,
quasi-random, and for the RMD metric it does noticeably
better for short integration times.

7.2. Minor Implementation Details

In this subsection, we will discuss design decisions particu-
lar to our own WRT system design.

This implementation takes up approximately 30,000 lines
of C code. We therefore emphasize that the classes and pseu-
docode we present here are in most cases simplified for clar-
ity.

In what follows, as in our code, we have followed consis-

tent and fairly obvious naming conventions that we feel have
improved reliability and flexibility and allowed many of the
benefits of object-oriented programming while developing in
a highly portable environment. (Indeed, the code moves be-
tween IBM AlX, SGI IRIX, and Intel (RedHat) Linux with
fewer than 50 system-dependent lines of code, mostly due to
differing system header files.)

These conventions are an adapted form of what are known
as “Hungarian” conventions, partly in deference to the na-
tionality of their chief developer, Charles Simonyi®. (See
McConnell?7 for an additional discussion of Hungarian nam-
ing, particularly as practiced at Microsoft.),

7.2.1. The WaveletIndex Class

Figure 6 shows the wavelet index class (i.e., t ypedef ) we
have adopted for our implementation. The names and se-
quence of the components are consistent with Equation 9.

For the time being, we have implemented all of these
fields as shor t (16 bit) unsigned integers. This allows us to
go as far as level wi.l = 16 without overflowing the offsets.
Experience suggests that the maximum level we will use will
be much less than 16. We could achieve a minor reduction
in memory usage by using unsi gned char variables for

(© The Eurographics Association and Blackwell Publishers 2002.
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typedef struct {
short int nu;
short int [;
short int m[4];
} Waveletindex;

Figure 6: The Waveletindex Class

wi.nu (but not wi.l, since it needs to represent levels from 0
to the maximum level inclusively).

7.2.2. Storing Wavelet Coefficients

Because wavelet coefficients are hierarchical in nature, we
refer to the data structures we devise here to store them as
“wavelet coefficient trees” (hereafter, “WCT"s).

Representing a WCT with a maximum level of resolution
Imax requires 16'maxt1 possible wavelet coefficients per chan-
nel. Clearly, compression is called for. The (bi)orthogonality
of wavelets presents an L2-optimal compression strategy —
thresholding low-magnitude coefficients. In this case, the
data was single-channel and single dimensional (i.e., each
wavelet coefficient’s support was unique), but the results are
independent of the wavelet dimensionality.

We not only want to guarantee a good approximation of
the data with the compressed coefficients, but also efficient
use of storage and fast reconstruction.

7.2.2.1. Hashing Coefficients Given a sparse set of
wavelet radiance coefficients {by}, we need to store them
in a way that facilitates the mapping of the wavelet index
k — by needed to perform the transport operation Equa-
tion (17). The obvious way to do this is with a hash table.
Not knowing the set of destination indices {k} in advance
prohibits perfect hashing, so it is necessary that the hashing
scheme allows for collisions and that the hash table entries
contain k as well as by values.

7.2.2.2. Multichannel Grouping As we mentioned in
Section 2, we have been treating data monochromatically
throughout this paper. In practical applications, however,
we must evaluate Equation (17) for all three (or how-
ever many) channels. Having assumed a non-participating
medium, the transport coefficients Tj are achromatic. Eval-
uation of Equation (17) simply means multiplying each el-
ement of a (now) 3-vector bjs by the same value of Tj and

accumulating the result in another 3-vector bE.

In the absence of the need for compression, it would be
convenient to group all channels of bjs into a single group,
rather than create a separate representation for each chan-
nel. In the presence of compression, however, each channel
has its own threshold. If one component is above its thresh-
old but the other two are below theirs, saving the latter is a
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typedef struct {
int iWnOfHash[int mxnlWnOfHash];
struct WaveletNode {
Waveletindex wi;
unsigned short mskChild;
unsigned short mskNu;
int iWclFirst;
} wnBase[int nwn];
struct WaveletCoefficientList {
float b[3];
int iWclNext;
} weclBase[int nwecl];
double umrad;
} WaveletCoefficientTree;

Figure 7: The WaveletCoefficientTree class

waste of storage. This would be mitigated, however, if there
were a high degree of correlation between the magnitudes of
the coefficients. Certainly, a wavelet representation of white
light given off by a luminaire displays a high degree of cor-
relation. When this light is reflected off a surface of varying
spectral reflectivity, however, that correlation will be dimin-
ished. By how much depends on the nature of the surface.

\We have two choices here: to group or not to group multi-
channel data. For the time being, we have chosen the former
— believing that there is sufficient correlation and advantage
in retrieval speed in most situations to justify grouping. This
definitely requires further study.

7.2.2.3. Hashing Nodes Instead of Coefficients In one
dimension, a node in the wavelet pyramid contains a sin-
gle wavelet coefficient. In four dimensions, such a node has
one pure wavelet (v = 15) coefficient and fourteen mixed
wavelet/smoothing (v € {1...14}) coefficients. (Recall that
the pure smoothing (v = 0) coefficient may be reconstructed
from the node’s ancestors, if any, and only needs to be kept at
the root node.) All coefficients at a given node correspond to
basis functions with the same (Haar) or similar (other bases)
support.

We might therefore expect to find a higher degree of cor-
relation in magnitude between coefficients that belong to the
same node and coefficients that do not. This suggests that
we can reduce the index storage overhead by hashing entire
nodes rather than individual coefficients.

7.2.2.4. The WaveletCoefficientTree Class Figure 7 shows
the fundamental structure we use to represent wavelet coef-
ficients: WaveletCoefficientTree (hereafter, WCT). Note that
the code in the figure is not legal C code: We have combined
several subsidiary classes and moved some component defi-
nitions around to indicate dynamically-sized structures.

Given a WCT wet, wet.iwnOfHash[] is the hash table it-
self. It is indexed by the hash of a (pure smoothing) wavelet

10
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O

typedef struct {
Transform3d
Transform3d

tf3dSobjwid;

tf3dDobjwid;
Transform3d tf3dSobjDobj;
Transform3d tf3dR;
Polygon spgnSobj;
Transform2d tf2dSparToSobj;
Transform2d tf2dSobjToSpar;
Polygon xpgnDobj;
Transform2d tf2dDparToDobj;
Transform2d tf2dDobjToDpar;

} TransportGeometry;

Figure 8: The TransportGeometry Class

index. Its entries are indices into wct.wnBase[], the array of
wavelet nodes. Note that the use of integer indices rather
than pointers allows the dynamic resizing of wct.wnBase[].

Each node contains the corresponding wavelet index. This
is not only useful for hash collision detection, but by index-
ing wct.wnBase[], we can traverse all nonzero entries in wct
directly. wct.wnBase[i].mskChild is a 16-bit mask indicat-
ing which of node i’s 16 children are also present in wct.
wct.wnBase[i].mskNu is a 16-bit mask indicating which ba-
sis selectors are present in wct for node i.

The array wct.wnBase[i].wclBase[] contains all wavelet
coefficients. For a given wavelet node wct.wnBase[i],
wct.wnBase[i].iWclFirst is the index into that array of the
first element in the list of coefficients belonging to the
node. Successive elements are ordered in increasing basis
selector value, which is derived from wct.wnBase[i].mskNu.
Each element wct.wnBase[i].wclBase[j] contains the index
wct.wnBase[i].wclBase[j].iWcINext of the next-higher set of
multichannel coefficients belonging to node i. (The last ele-
ment in the list has this index set to -1.)

7.2.3. The TransportGeometry Class

The TransportGeometry class shown in Figure 8 contains all
geometric information necessary to compute wavelet radia-
tive transfer between source and destination polygonal ob-
jects. Given a TransportGeometry object tg, tg.tfSobjwld is
the affine 3D transform from source object to world po-
sitional coordinates, tg.tfwWldDobj is the affine 3D trans-
form from world to destination object positional coordi-
nates, tg.tfR is the orthogonal 3D rotational transform from
source to destination directional coordinates, tg.pgnSobj and
tg.pgnDobj are the source and destination polygons (in ob-
ject coordinates), tg.tf2dSparToSobj is the affine 2D trans-
form from source parametric to source object coordinates,
and tg.tf2dDobjToDpar is the affine 2D transform from
source parametric to source object coordinates. The imple-
mented TransportGeometry class contains inverses of most
of these transforms as well, since some of the integration
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Figure 9: Simplified Functional Decomposition for Wavelet
Radiative Transfer

schemes we use actually project destination points back into
source space.

7.2.4. Functional Decomposition of WRT

Figure 9 shows a simplified functional decomposition for
WRT. In this subsection, we will discuss each block indi-
vidually and describe how it implements the ideas presented
in Section 6. We will proceed in a bottom-up sequence.

7.2.4.1. tg_oracle() This function is a geometric query
function. Given a TransportGeometry and source and des-
tination WaveletIndices, it performs several fast query func-
tions.

o |f either source or destination wavelet directional supports
lie entirely outside the UDC, they cannot interact.

e Projecting the 16 vertices of the destination support hy-
percube onto the plane that contains the source, the ver-
tices can be classified by the “fast reject” part of a four-
dimensional version of the Cohen-Sutherland line clip-
ping algorithm (see Foley, et al.8, p. 113, for example).

e If all 16 destination vertices map into points contained
within the source support, we assume that the entirely of
the destination support does, so an exact computation of
the inner product (which is then proportional to the vol-
ume of the destination support hypercube) is possible.

The latter two items require an assumption that the pro-
jected destination support vertices define a convex hull for
the entire projected support. As we noted in Section 7.1.3.2,
this is not in general the case. Nevertheless, by disabling this
oracle and comparing results, we have found empirically that
it is a reasonable approximation, at least for oracular pur-
poses.

7.2.4.2. tc_integrate() This function is responsible for per-
forming the actual integration. It is capable of using any of
the schemes described in Section 7.1.4.

7.2.4.3. wn_pull() and wn_push() These functions act on
individual nodes of a WCT to perform, respectively, a single-
level, four-dimensional Haar analysis (i.e., forward trans-
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tc_propagate(Waveletindex wiS, double bS[],
Waveletindex wiD,
TransportGeometry tgSD,
WaveletCoefficientTree wctD)
if wiD.I == maximum wavelet level + 1,
return tc_eval(wiS, wiD, tgSD)
else if tg_oracle(wiS, wiD, tgSD) gives
exact result,
return it
else
for each child wiDChild of wiD,
tc[wiDChild] = tc_propagate(wiS,
bS, wiDChild, tgSD, wctD)
for each channel chan,
for each child wiDChild of wiD,
wn[chan][wiDChild] = bS[chan]
% tc[wiDChild]
wn_pull(wn)
if wiD.I is not the top destination
level,
wn[chan][wiD.nu = 0] = 0
wctD[wiD] = wn

Figure 10: tc_propagate() Pseudocode

form or “pull” — cf. Hanrahan et al.12) or synthesis (i.e.,
inverse transform or “push”).

7.2.4.4. tc_eval() Given source and destination wavelet in-
dices, this function computes a single transport coefficient.
It will call itself recursively if either source or destination
basis selectors are nonzero, although as it is currently used
in WRT, tc_eval() is only called to evaluate pure smoothing
coefficients. (The ability to work with non-zero basis selec-
tors is used in self-test mode.) At the user’s request, it will
call tg_oracle() to attempt to find an alternative to numerical
quadrature. Otherwise, it will call tg_integrate() to perform
that quadrature.

7.2.4.5. tc_propagate() This function propagates a single
source wavelet coefficient to a destination wavelet coef-
ficient tree wctD. Figure 10 shows its pseudocode. Like
tc_eval(), it will work with a nonzero source basis selec-
tor, but in the context of WRT is only called upon with pure
source smoothing coefficients. It is important to note that
wctD will contain no pure smoothing coefficients except at
a specified top level. The source pure smoothing coefficients
corresponding to wiS are passed to the function as bO[].

There are three alternatives:

o |f the destination wavelet is one more than the maximum
wavelet level, it returns the smoothing coefficient it gets
from tc_eval().

o If tg_oracle() gives an exact result (often zero), it returns
that result. Note that wctD does not need to be updated
in this case, since the exact result is either zero or a pure
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wct_transport(Waveletindex wiS, double bSO[],
WaveletCoefficientTree wctS,
TransportGeometry tgSD,
Waveletindex wiDTop,
WaveletCoefficientTree wctD):
if tg_oracle(wiS, tgSD, wiDTop) says an
interaction is not possible,

return
wn = wctS[wiS]
if wn exists,
for each channel chan,
wn[chan][0] = wn[chan][0] + bSO[chan]

wn_push(wn)
for each child wiSChild of wiS,
wct_transport(wiSChild, wn[*][wiSChild],
wctS, tgSD, wiDTop, wctD)
else
tc_propagate(wiS, bSO, wiDTop, tgSD, wctD)

Figure 11: wct_transport() Pseudocode

smoothing result below the top level, neither of which re-
quires storage.

e Otherwise (and most importantly) the function applies it-
self recursively to the 16 child indices of wiD, collecting
the 16 returned smoothing coefficients. For each channel,
it then multiplies each coefficient by the source coefficient
for that channel, and uses wn_pull() to apply a “pull” to
convert the result to wavelet coefficients. If wiD.l is not
the top destination level, the pure smoothing coefficient is
redundant and is set to zero. The result is then ready to be
stored in wctD.

7.2.4.6. wct_transport() Figure 11 shows the pseudocode
for this function, which transports an entire source wavelet
coefficient tree wctS to a destination wavelet coefficient tree
wctD.

The function first uses tg_oracle() to reject impossible in-
teractions. If there is a node wn, indexed by wiS in wctS, it
will call itself recursively to descend the tree. First, though,
to the pure smoothing coefficients of wn, it adds bSO[]
(which is zero when this function is initially called before
recursion). It then invokes wn_push() to convert the wavelet
coefficients to finer pure smoothing coefficients at the level
of the children of wiS. wct_transport() then applies itself re-
cursively to each of these children, passing the elements of
wn as new values of bSO[].

If wn does not exist in wctS, there are no nodes in wctS
at or below wiS, so the only thing that needs to be prop-
agated is the pure smoothing value bSO[]. wct_transport()
calls tc_propagate() to do this. The change of prefix is an
indication that below this call level, we are no longer con-
cerned with a source WCT, but with individual pure smooth-
ing (multichannel) coefficient vectors.

10
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Figure 12: Geometry Used for Example of Transport

7.3. Example of Transport

For a test configuration, we imagine light shining through
the square stained glass window shown in Figure 13.

As illustrated in Figure 12, the incident light shines down
with a distribution peaking at an angle of 45° from the hori-
zontal, diffused by the glass according to a distribution pro-
portional to the 4th power of the cosine of the angle between
the propagation direction and the peak direction. The light is
transported to the floor and is collected there.

Figure 14 shows the complete, inversely-transformed 4D
results. Each of the small images represents the spatial vari-
ation of radiance in the fixed direction given by the image’s
position in the matrix.

Figure 15 is a detailed view of the brightest part of Fig-
ure 14. This computation of 32 x 32 x 32 x 32 coefficients
(in red, green, and blue channels) compressed by 95% re-
quired 12.4 hours of CPU time on an IBM RS/6000 POW-
ERserver 560 workstation.

Needless to say, this is impractical for a single frame, but
the result is reusable.

Figure 16 shows several frames generated with an other-
wise conventional raytracer modified to treat a wavelet radi-
ance distribution as a “4-D texture”. Each frame is generated
from a different camera position. Most of the “floor” is cov-
ered with 16 tiles with alternating mostly-diffuse (“lighter”)
and mostly-specular (“darker”) Phong illumination models
in a checkerboard pattern. The resulting images contain none

of the “noise” common to the usual Monte Carlo approach
to this sort of problem.

8. Work in Progress

We are continuing work with improved transport coefficient
integration techniques and plan to take further advantage of
wavelet representations, such as knowledge of the destina-
tion’s reflective properties, to reduce the amount of computa-
tion required and allow us to go to larger sets of coefficients
in less time.

We also hope to extend this work to wavelets with bet-
ter representational properties than Haar wavelets and to de-
velop more rapid reconstruction algorithms.
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Figure 13: A Stained Glass Window. This is the spatial com-
ponent of radiance for the test configuration.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14: Four-Dimensional Results of Wavelet Radiative
Transport

Figure 15: Detailed View of the Brightest Part of Figure 14
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Figure 16: Example of Wavelet Transport. Reflected wavelet representations of radiance as shown in Figure 14 can be sampled
from different directions.
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