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Abstract
This paper describes a way to perform realistic
three-dimensional texturing of ray-traced objects
with irregular surfaces.  Such texturing has been
done in the past with texture mapping, particle
systems, or volumetric methods.  We propose an
alternative to these called a lattice.  Lattices
work as fast but inexact ray tracers.  As long as
lattices are used for small objects, though, the
inexactness doesn’t show on the scale of the
display, and the result is acceptable.
The paper shows how lattices can be integrated
with a more traditional ray tracer, with several
examples.
Time and memory space considerations are
major constraints on lattices, preventing
widespread practical application at the present
time.  The paper discusses these limitations and
how they might be reduced.

1 Introduction
This paper discusses a new technique for adding
surface detail to objects represented in a three-
dimensional rendering system.  We will confine
the discussion to a ray-traced renderer.  Such
systems are capable of a high degree of realism.
The kinds of objects we will focus our attention
on are those which have features on their surface
which are much smaller than, but not negligible
in comparison to, the object itself.

Examples of such “hairy” objects are a fuzzy
tennis ball, a field of grass, tree bark, a furry
animal, or a human head with hair.

Two traditional approaches to generating
images with these kinds of objects are texture
mapping and particle systems.

Texture mapping was developed by Blinn
([Blin76]).  Although it has been used with

rendering techniques other than ray tracing
(sorted polygons, for instance), it fits nicely into
the ray tracing environment.  The state-of-the-
art in texture mapping is highly sophisticated
(cf. [Heck86]).

Nevertheless, a major shortcoming of texture
mapping is that it is two-dimensional.  It works
fine when the object has a smooth surface like
glass, metal, or plastic, but a hairy surface
causes problems.  In particular, the edges of the
object appear smooth and featureless when they
should show the small scale structure silhouetted
against whatever is behind the object.  It is also
difficult to render shadows caused by an
unsmooth surface.

The other popular approach to rendering hairy
objects, particle systems ([Reev83]), uses a set of
easily-rendered, usually small objects that are
allowed to “move” during rendering, tracing out
paths on the display like a collection of
generalized paintbrushes.  Particle systems have
also seen wide application.  In general, particles
are not ray-traced, but drawn directly on the
display.

Particle systems are best used at the limits of
resolution.  A particle at close range looks no
more realistic than a brushstroke.  But if a
particle system describes small or thin objects
(i.e., those whose thickness maps to a few pixels
on the display), the result is acceptable.

Particles do have one major drawback that limits
their usefulness.  While a particle can interact
with its environment by emitting, reflecting,
refracting, and blocking light coming from that
environment, it cannot interact with other
particles in the same way (except probabilis-
tically, as in [Reev85]).  In general, particles
cannot shade each other.
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The reason is that a particle has no notion of the
spatial relationship of its path to those of the
others.

Recent non-traditional approaches to three-
dimensional surface texturing ([Kaji89],
[Perl89], and [Lewi89]) treat the problem as one
of volume rendering.  While this is capable of
producing quite realistic results, the rendering
time is considerable.  Kajiya and Kay’s “teddy
bear” ([Kaji89]) required between one half and
one cpu-hour on a configuration of 16
mainframes.  (According to [Crow89], it works
out to about 1012 floating point operations.)

2 Lattices
Developers of particle systems postulated that on
small-scale features one need not go to the same
lengths as on large-scale objects to produce
acceptable images.  This idea is important.

We will now discuss an alternative to both
texture mapping and particle systems, called
“lattices”, inspired by that idea.

Imagine a small object (“primitive”) surrounded
by a rectangular box.  Let there be a grid on
each of the six faces of this box.  The x, y, and z
extents of the box are integer multiples of the
grid spacing σ .  These grids form the lattice.
When measured on the faces of the lattice, lat-
tice coordinates are always non-negative
integers.  Figure 1 shows an example of this: a 4
by 2 by 4 lattice surrounding a small object that
resembles a small hook.

Lattices have an underlying small-scale ray
tracer that is faster than but not so accurate as a
conventional ray tracer.  Later on, we’ll consider
how to combine the two.

2.1 Rasterization
The process we call “rasterization” constructs
the small-scale ray tracer as follows:  Before
rendering the image, from every entry point pi

on the lattice to every exit point po on the lattice,
determine the intersection, if any, with the
object.  Save the relevant information (see
below) about all intersections in a lookup table.
In case of multiple intersections for the same
(pi, po), save only the intersection that is closest
to pi.

Then begin ray tracing as usual.  Each lattice
has a transform from world to lattice coordinates
which allows scaling, orientation, and po-
sitioning of the lattice.  Apply this transform to
each ray to convert it to lattice coordinates and
see if the ray intersects the lattice’s bounding
box.  If it does, the ray intersects the object if
there is an entry for the ray’s (pi, po) in the
table, and the intersection information is there.

The fundamental assumption about lattices here
is that the projection of σ (transformed into
world and then display coordinates) subtends no
more than a few pixels on the display.  The
main source of error would otherwise be aliasing
caused by the rounding of the ray’s initial world
coordinates, which are real, to lattice
coordinates, which are integer.

2.2 Grid Spacing
Considerations

σ plays a critical role in determining the
appearance of the object, but σ also figures
heavily into the storage space needed for the
object representation.  This space is large.  To
get a rough estimate of how large, suppose we
are given a lattice of size N cx  by Ncy  by

Ncz grid cells.

Figure 1:  A primitive object (“hook”)
embedded in a lattice.  The object is
represented as four spheres connected by
cylinders.  A ray (pi, po) = ((1 0 1), (1 2 3))
intersects the object.
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Nlpαβ, the number of points on each face
bounded by edges parallel to axes α and β is
given by

Nlpαβ = (Ncα + 1) × (Ncβ + 1) (1)

Intersecting rays can start of any of six faces and
end on any of five faces.  Thus N lp , the number

of pairs of (pi,po) points to be tried, has 30
terms.  Combining identical terms yields

( )
( )

N N N N N N N

N N N

lp lpxy lpyz lpyz lpzx lpzx lpxy

lpxy lpyz lpzx

= + +

+ + +

8

2 2 2 2

(2)

This equation should be considered an upper
limit. See [Lewi88] for an explanation.  There is
no easy analytical way to determine N ix , the ac-
tual number of intersections.

So far, σ  has been chosen to be equal to the
smallest characteristic feature size (i.e., the
thickness) of the primitive, but this need not be
the case.  As σ  decreases, a finer and finer
lattice surrounds the object.  A smaller σ  will
increase the number of samplings and intersec-
tions, but it will also improve resolution.
Even without decreasing σ , both Nlp and Nix

can be large.  For the relatively simple object
shown in Figure 1, Ncx = 4, Ncy = 2, and

Ncz = 4, so, according to (1) and (2),

N lpxy =  15, N lpyz  =  15, and N lpzx =  25.

There are then Nlp = 9.950 (pi, po) pairs to try!
Table 1 shows similar calculations, along with
the actual numbers of intersections found, for a

variety of objects and σ −1 values.

For the sake of discussion, imagine a cubic
lattice, with Nc cells on an edge, then
N N N Nc cx cy cz= = = .  According to (1) and

(2), the number of points to try goes like

( )Ο Nc
4 .  This is not, however, a measure of the

size of the table, only of the number of points to
try.  The way the number of intersections scales
with Nc depends on the nature of the object, but
for a given object, the ratio of Nix to Nlp is
roughly constant.

2.3 The Lattice Hash Table
How best to store intersections for the fast ray
tracer?  There are six (integer) lattice
coordinates in (pi, po), so one could implement
the table as a 6-dimensional array.  But as seen
in Table 1, this table would be huge for most
non-trivial lattices. Note, however, that the table
is sparse for filamentary structures.

The obvious way to store the information, then,
is in a hash table whose index is constructed
from (pi, po).  This is the Lattice Hash Table, or
LHT.  The information this table has to contain
is: (pi, po) itself (since the hashing cannot be
guaranteed to be perfect); the point of in-
tersection, in real1  lattice coordinates; the
surface normal of the object at the intersection
(this determines reflection and other optical
properties discussed below); and a pointer or
index into the hash overflow area

In theory, this would require 4 integers and 6
reals for each entry.  If each quantity required 4
bytes, each entry would require 40 bytes.  For
tables with ~100.000 entries or so, this would
use a considerable amount of memory!  With
considerations described in [Lewi88], the size of
an entry can be reduced to 14 bytes with
minimal impact.  The final section of this paper
will discuss possible further reductions.

                                                       
1 Although lattice coordinates are
integers on the lattice grids, the intersection
points are, in general, real.

primitive σ −1 Nlp Nix Nix:Nlp

sphere 1 2.4 (3) 5.1 (2) 0.21
diameter:   1 2 1.8 (4) 3.5 (3) 0.19

3 7.2 (4) 1.4 (4) 0.19
cylinder 1 2.4 (4) 1.1 (4) 0.45
  length:  10 2 2.4 (5) 9.4 (4) 0.39
diameter:   1
cylinder 1 1.2 (6) 5.7 (5) 0.48
  length: 100 2 1.3 (7) 5.4 (6) 0.41
diameter:   1
spiral 1 3.4 (4) 1.1 (4) 0.33
  radius:   5 2 3.5 (5) 1.1 (5) 0.32
  height:  10
Figure 1 1 9.9 (3) 3.2 (3) 0.32
“hook” 2 9.6 (4) 3.0 (4) 0.32
Plate 3 1 5.2 (5) 1.0 (5) 0.19
“hair” 2 6.9 (6) 1.3 (6) 0.20

Table 1: Some typical lattice intersection
calculations.
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2.4 Lighting Model
Given a way of determining intersections, the
next step for the ray tracer is to determine the
intensity of light at the intersection point.
Realistic models of this interaction can be quite
complex ([Cook82]), but there is a model dating
back to [Phon75] that is comparatively simple
and is good enough to illustrate the effectiveness
of lattices.

The formula for Phong shading is well-known
and we need not reproduce it here.  Its
connection to lattice information is in the major
role played by the surface normal N in
determining the intensity.

It may seem unnecessary to save the intersection
point as well as N for each (pi, po).  There is,
however, a subtle dependency on the intersec-
tion point in Phong shading.  The exact
intersection point is needed because it affects the
shadowing calculation; that is, the set of sources
over which the summation of specular and
diffuse intensities takes place.  Using the center
point of the lattice as the intersection point, for
instance, would never allow the primitive to
shade itself.

2.5 Example: A Thistle
Plate 1 and Plate 2 show a simple application of
a lattice: the rendering of a “thistle” made up of
100 randomly-oriented line segments, each of

dimensions 1 by 1 by 20.  For emphasis, both
plates enlarge the segments more than the
recommended few pixels.

Plate 1 shows this object without lattices
shadowing each other, as would be the case if
rendered by a particle system.

Plate 2 shows the effect of allowing lattices to
shadow each other.  (In both cases, the jagged
edges are a result of the enlargement of the fig-
ure for purposes of illustration and are not
detectable at the recommended scale for lattice
primitives of a few pixels.)

3 Lattices in a
Conventional Ray-
Tracing System

In order for lattices to be useful, it should be
possible to combine them with more traditional
modelling and rendering techniques.

The first element in the resulting intersection
list is the intersection point of the ray with the
composite object.  The lighting model, with
shadowing, can then be applied.

Note that it does not matter how one gets
intersection lists for the leaf nodes.  The only
requirement for primitive objects in a CSG
system is the ability to build ray-object
intersection lists for them.  This is what will
allow us to fit lattices into CSG.

Plate 1: 100 randomly-oriented straight
lattice primitives without self-shading

Plate 2: 100 randomly-oriented straight
lattice primitives with self-shading
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3.1 Constructive Solid
Geometry

The Constructive Solid Geometry (CSG) (cf.
[Requ80]) approach starts with simple primitive
objects like spheres and defines a set of logical
operations that combine those simple objects
into more complicated ones.

The CSG representation of any object is a binary
tree whose leaf nodes are primitive objects and
whose non-leaf nodes are logical operators
acting on their child objects.  Ray tracing a CSG
tree is straightforward.  Given a ray, for each
leaf node build a list of intersections of the ray
with that primitive object.  The list is ordered in
increasing distance from the observer.  Then,
proceeding bottom-up from the leaf nodes, for
each non-leaf node build a list of intersections
by merging the lists of its children according to
rules determined by the logical operator for the
node.  (For more details, see [Requ80].)

3.2 Primitives
There are many possible objects that can serve
as primitive objects for a CSG system.  We will
choose lattices (obviously) and quartics.  Other
types of primitive (fractals, polyhedra, splines,
or whatever) are feasible, but only one non-
lattice primitive is sufficient to demonstrate how
well lattices fit into a CSG scheme.

3.2.1 Quartics
A quartic is a polynomial in x, y, and z of the
form

f x y z a x y zijk
i j k

i j k
i j k( , , ) =

= = =

+ + ≤

∑
0

4

(3)

The surface of the quartic is defined by f = 0,
and, by convention, f > 0 outside the quartic
and f < 0 inside it.  Quartics can represent a
wide variety of figures, including half-spaces,
spheres, ellipsoids, paraboloids, hyperboloids,
and toroids.

The restriction i j k+ + ≤ 4 is purely
practical.  Intersecting a ray with a quartic
produces polynomials of degree of at most 4 to
be solved for intersections.  Closed-form
solutions do not exist for arbitrary polynomials
of degree greater than 4.  The quartic restriction
thus avoids having to deal with the iterative and

comparatively slow rootfinding techniques
needed at higher degrees.  (3) also permits easy

computation of the surface normal, 
∇f

f
, in

closed form by purely symbolic methods.

3.2.2 Lattices
Section 2 describes the representation of lattice
primitives in an LHT.  The lattice transform
described there serves two purposes.  First, to
clip the ray against the lattice.  Second, to
transform the normal from the LHT’s lattice
coordinates back into world coordinates to find
the illumination from the Phong formula.

3.3 Implementation
We have developed a system of programs,
written in C and running under UNIXtm, that
implements the ideas of the previous sections.
The major components are the ray tracer,
render, and the program rasterize, which
constructs the LHT.

3.4 Example: A Fuzzy Sphere
Plate 3 shows a closeup view of the “hair” lattice
used in this example.  Similar to Figure 1, but
larger, the hair was modelled as 10 spheres
connected by 9 cylinders.

Plate 3: A closeup of a “hair” lattice
primitive.  This is the same primitive used in
both Plates 4 and 5.



-6-

Plate 4 shows 1000 almost-uniformly-spaced
hairs on a sphere, the result of combining
quartics with lattices.  An infinite plane
(actually a half-space) extends below the sphere.
Unlike texture mapping, the edges show three-
dimensional texture.  The hairs cast shadows
from the two light sources (of differing
intensity) onto the plane, the sphere, and
themselves.

It took 12.1 hours of CPU time to render this
512 by 512 pixel image on an unloaded Sun
3/60.  The system had 8MB of real memory,
much more than render needed, so paging was
minimal.

Plate 5 is similar to Plate 4, but with 5000 hairs.
This took 25.5 hours of CPU time to render on
the same configuration.

4 Conclusions
This paper has shown that using lattices for
three-dimensional texturing can produce
acceptable results.  For rough objects, this
technique produces more realistic images than
either texture mapping or particle systems.

Table 2 includes the option of “full ray trace”:
one that would remove the intermediary lattice
primitives and represent them with CSG objects
made up of the primitives used to construct the
lattice primitive (spheres connected by cylinders
in the case of the “hair” of Plate 3).  The large-

scale ray tracer would then render the result.
The three most common criteria used in
evaluating techniques of rendering realistic
images are fidelity, speed, and, to a lesser
degree, space.  Table 2 qualitatively summarizes
our findings.

For any but the most trivial primitives, this
would increase the number of leaf nodes by a
large factor (19 in the case of Plates 4 and 5) to
a value that would slow down ray tracing and
use more memory.  Not having to do this is the
main rationale for texture mapping, particle
systems, and lattices in the first place, so full ray
tracing is included in the table only for purposes
of comparison.

texture particle full
mapping system ray trace lattice

fidelity low medium high high
speed very fast fast slow moderate
space small small medium large

Table 2: Qualitative summary of results.

5 Future Directions
We have shown the conceptual validity of lattice
techniques.  Continued work with lattices should
move in the direction of practicality, with
particular attention paid to improving time
efficiency and memory usage.

Plate 4: 1000 “hairs” placed randomly on a
sphere.  Notice how the texture at the edges of
the sphere appears against the background.

Plate 5: 5000 “hairs” placed randomly on a
sphere.
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5.1 Time Efficiency
Profiling render shows that very little time (less
that 1%) is spent looking up intersections.  Most
time is spent computing intersections with
bounding boxes2 .

This is consistent with other work ([Whit80], for
example).  Apart from the bounding boxes, no
optimizations such as described in [Kaji83] or
other literature have been implemented to speed
up intersection computations.  This should be
done.

5.2 Memory Usage
The other drawback to using lattices is the space
required for the LHT.  When each primitive
requires about one megabyte of storage, this can
eat up virtual memory quickly.  There are two
possible ways in which the memory
requirements could be reduced.

5.2.1 Compress the LHT
Section 2.3 mentioned considerations that
allowed reduction of the size of each entry in the
LHT from 40 bytes to 14 bytes.  Other
reductions might be possible.

For example, it is necessary to keep (pi, po)
around because the hashing scheme is not
perfect.  If the set of values to put in the table is
known from the start, as it is now, it should be
possible to devise a perfect hashing scheme.
Omitting (pi, po) and the overflow pointer would
reduce the size of each entry to 5 bytes.

5.2.2 Construct a Stochastic Lattice
Hash Function

This alternative approach would seek the
replacement of the LHT entirely by replacing the
data in it with a rapidly-evaluated function
whose parameters were derived statistically from
the original data.  Instead of seeking the exact
representation that the previous approach would
maintain, this approach would trade some
exactness for recovering some address space.

                                                       
2 Clearly, this arises from so many
distinct objects being ray traced.
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